新闻中心

News

纳米陶瓷结合剂cBN砂轮的研究进展

日期: 2018-12-11
浏览次数: 1096

刘瑞平,苏伟明

(中国矿业大学(北京)材料系,北京 100083)

要:文章综合论述了纳米陶瓷结合剂的性能特点、增强增韧机理以及研究进展,并探讨了纳米陶瓷结合剂cBN砂轮制备过程中存在的问题及对策,指出纳米陶瓷结合剂不仅可以解决目前陶瓷结合剂低熔点与高强度之间的矛盾,而且对于拓宽cBN砂轮的应用范围、适应超高速磨削技术具有十分重要的意义。

关键词:纳米陶瓷结合剂;cBN砂轮;研究进展;综述

1 引言

由于立方氮化硼(cBN)具有硬度高、耐磨性好、热稳定性好、在高温下与铁族材料不发生化学反应等优点,已在各类磨削工具中得到了广泛应用。在各类cBN砂轮结合剂中,金属结合剂自锐性差、在加工金属材料时易发生黏着,树脂结合剂热稳定性较差,而陶瓷结合剂介于金属结合剂和树脂结合剂之间,其耐热温度较高、自锐性较好、强度高、耐磨性好。陶瓷结合剂cBN砂轮不仅具有切削锋利、磨削力小、生产效率高、使用寿命长、易于整形与修锐、磨削精度高等优点,而且还具有磨削时工件温度低,能消除残余拉应力而产生残余压应力,使工件耐用度提高30%~50%的特点。因此,陶瓷结合剂cBN砂轮作为一类高速、高效、高精、低成本、低污染的高性能磨具产品,成为近年来世界磨具研究开发的重点。

陶瓷结合剂的开发研究是陶瓷结合剂cBN砂轮制造的基本前提,高性能陶瓷结合剂是制备高性能陶瓷结合剂cBN砂轮的关键。随着近年来超高速cBN砂轮的的发展,对陶瓷结合剂的性能提出了更高的要求,即要求结合剂具有高强度、低耐火度、良好的气孔性、浸润性、工艺性、化学稳定性的特点且与cBN磨料热膨胀系数匹配,然而传统的陶瓷结合剂普遍存在烧结温度高、强度低等缺陷。纳米陶瓷结合剂由于其粒度小、比表面积大、烧结温度低、强度高、韧性好等优点,有望解决目前传统陶瓷结合剂低烧结温度和高强度之间的矛盾问题,提高陶瓷结合剂cBN砂轮的性能,进一步拓宽cBN砂轮的应用范围。

2 纳米陶瓷结合剂的特点

除具有常规传统陶瓷结合剂的优点之外,纳米陶瓷结合剂还具有如下独特的特点:

(1)纳米陶瓷结合剂不仅可以用于超细cBN微粉砂轮的制造,解决常规陶瓷结合剂分布不均匀、对cBN磨料把持力小的问题,而且可以解决粗颗粒的cBN砂轮容易产生工具强度低和磨粒把持力不足问题。

(2)纳米陶瓷结合剂引入纳米级的颗粒、片晶、晶须和纤维等第二相,不仅降低了cBN磨具的烧结温度,而且结合剂的韧性大大提高,有效解决了cBN磨料-传统陶瓷结合剂界面应力问题,使得粗颗粒工具的强度大幅度提高。

(3)纳米陶瓷结合剂比普通结合剂具有更低的软化温度和更好的韧性。低的软化温度使得纳米陶瓷结合剂的烧结比普通结合剂的烧结更加致密化,而好的韧性提高了纳米结合剂的拉应力承受极限。

3 纳米陶瓷结合剂的增强增韧机理

1987年德国Karch等首次报道了纳米陶瓷的高韧性、低温超塑性能后,世界各国对利用纳米颗粒以解决陶瓷材料脆性和难加工性寄予厚望。当把直径为纳米级的颗粒加入陶瓷中时,其强度和韧性大大提高。纳米陶瓷由于晶粒的细化,晶界数量会极大增加,同时纳米陶瓷的气孔和缺陷尺寸减小到一定尺寸就不会影响材料的宏观强度,结果可使材料的强度、韧性显著增加。有关纳米陶瓷复合材料的增韧强化机理目前不很清楚,说法不一,归纳起来大致有以下几种:

第一种是细化理论,该理论认为纳米相的引入能抑制基体晶粒的异常长大,使基体结构均匀细化,是纳米陶瓷复合材料强度韧性提高的一个原因。

第二种是穿晶理论,该理论认为基体颗粒以纳米颗粒为核发生致密化而将纳米颗粒包裹在基体晶粒内部,因此在纳米复合材料中存在晶内型结构,而纳米复合材料性能的提高与晶内型结构的形成及由此产生的次界面效应有关。晶内型结构能减弱主晶界的作用,诱发穿晶断裂,使材料断裂时产生穿晶断裂而不是沿晶断裂。

第三种是钉扎理论,该理论认为存在于基体晶界的纳米颗粒产生钉扎效应,从而限制晶界滑移和孔穴、蠕变的发生。氧化物陶瓷高温强度衰减主要是由于晶界的滑移、孔穴的形成和扩散蠕变造成的,因此钉扎效应是纳米颗粒改善氧化物高温强度的主要原因。

4 纳米陶瓷结合剂cBN砂轮的研究进展

纳米陶瓷结合剂是一种新型的超硬磨具结合剂,它显著降低了磨具烧结温度,大幅度提高了制品强度、韧性和耐磨性,且气孔可控,为陶瓷结合剂的应用开拓了一个崭新的领域。近年来国内对纳米陶瓷结合剂进行了探索研究。燕山大学王艳辉课题组系统地研究了纳米陶瓷结合剂制备过程中的一系列关键问题,开发出了一系列新型的纳米陶瓷结合剂。研究发现,在纳米陶瓷结合剂中加入20%~30%的水和适量的表面活性剂,可以提高成型密度、毛坯强度和制品的抗折强度,同时,其通过改变造孔剂的粒度和掺入量,可以获得近于无气孔的致密型和具有均匀分布的圆形理想气孔的结合剂,气孔孔径和数量可控,并且气孔率可以在大范围内调整,这种理想型均匀分布的圆型气孔不仅对结合剂的强度影响较小,而且可以最大效率地发挥容屑、断屑、贮存冷却液、润滑剂的作用。

为了解决纳米陶瓷结合剂粉体易于团聚、分散性差的问题,燕山大学赵玉成课题组采用高分子网络凝胶法(P-G法)制备了用于超精磨削用超硬砂轮陶瓷结合剂组分。研究表明,采用P-G法制备单组分氧化物粉体(如Al2O3Mg O、SiO2Zn O等),由于凝胶过程中所形成的高分子网络的阻碍作用,使粒子在溶液中的移动受到限制,在干燥和烧结过程中,粒子接触和聚集的机会减少,可以减小团聚的产生,有希望获得颗粒尺寸小、分散均匀的超细粉体材料,制备得到的氧化物粉末易于确定煅烧温度,可以制备出物相单一、颗粒形态近球形、粒度分布窄的纳米粉体,但对于化学性质活泼的Na2O、K2O等氧化物的粉体则难以制备。

鉴于溶胶凝胶法在材料制备方面所展示的特点,湖南大学胡伟达探讨了溶胶凝胶法制备Na2O-B2O3-Al2O3-SiO2系陶瓷结合剂原料及工艺因素的影响,优化出的最佳工艺参数为:加水量r(n H2O/ n TEOS)为60,p H调节为4,凝胶化温度为70℃,后续凝胶热处理温度为500℃,最后经球磨处理并过200目筛网,制得陶瓷结合剂粉末。

除此之外,东北大学张景强等人以超高速陶瓷cBN砂轮的结合剂低温高强性能要求为目标,在以化学纯原料为主的R2O-RO-B2O3-Al2O3-SiO2玻璃体系基础上,引入纳米改性剂来对陶瓷结合剂基体进行了改良强化。结果表明,纳米陶瓷结合剂的抗折强度、耐火度、浸润性以及线膨胀系数与普通陶瓷结合剂相比有着显著优势。

5 纳米陶瓷结合剂cBN砂轮存在的问题及对策

与传统的陶瓷结合剂相比,尽管纳米陶瓷结合剂具有强度高、韧性好、烧结温度低等优点,但由于其粒度较小、比表面积大,在cBN砂轮的制备过程中还存在一些问题,具体表现在以下几个方面:

(1)由于纳米陶瓷结合剂的细粒度及极大表面积,外观膨松,密度较低,这可能对磨具的成型带来一定的困难。因此必须采用适当的压制工艺,获得较高的毛坯密度,从而提高烧结强度,减少烧成收缩。

(2)纳米陶瓷结合剂单组份粉体制备比较容易,但问题是在后续球磨混合的过程中如何保证其分散性良好且均匀分布。为了解决这一问题,可以采用溶胶-凝胶法制备多组元的混合氧化物陶瓷粉体,实现其分子级别的均匀混合,除此之外,还可以结合凝胶注模成型工艺的原理,通过球磨后高分子网络固化而得到均匀分散的纳米陶瓷结合剂。

(3)由于纳米颗粒的活性较高,烧结过程中易出现晶粒的异常长大且难以致密等缺点。因此,要获得真正意义上的纳米陶瓷结构材料并不容易。为了解决这一问题,可以采用新型的低温快速烧结工艺,如SPS等,同时探寻加入抑制纳米颗粒异常长大的微量添加剂等。

(4)与传统陶瓷结合剂相比,对纳米陶瓷结合剂中气孔的结构(如形状、含量和大小)和其性能之间的关系缺乏系统深入的研究。因此,应加强纳米陶瓷结合剂中气孔的尺寸和含量对其性能的影响规律的研究。

6 结束语

纳米陶瓷结合剂cBN砂轮是cBN磨具发展的必然趋势,其优异的性能不仅可以解决目前传统陶瓷结合剂cBN砂轮存在的问题,而且可以大大拓宽其加工范围和应用领域,展现出巨大的应用前景。为适应超高速磨削技术对cBN砂轮提出的更高的要求,应系统地研究纳米陶瓷结合剂制备的基础科学问题,同时继续加强高性能纳米陶瓷结合剂的研究和开发工作,加强纳米陶瓷结合剂cBN砂轮在超高速磨削、航空航天等难加工材料磨削方面的应用研究。

 

纳米陶瓷结合剂cBN砂轮的研究进展 

 声      明:文章内容转载磨具磨料研习社,仅作分享,不代表本号立场,如有侵权,请联系编除,谢谢!


News / 推荐新闻 More
2020 - 05 - 19
氧化铝,化学式Al2O3,是一种高硬度的化合物,熔点为2054°C,沸点为2980°C,在高温下可电离的离子晶体,常用于制造耐火材料。氧化铝陶瓷具有机械强度高、绝缘电阻大、硬度高、耐磨、耐腐蚀及耐高温等一系列优良性能,其广泛应用于陶瓷、电子、纺织、化工、建筑及航天等各个领域,是目前氧化物陶瓷中用途最广、产销量最大的陶瓷新材料。除了用作电真空器件外,还被大量用来制造薄膜电路基板、火花塞瓷体、纺织瓷件、晶须及纤维、磨料、磨具及陶瓷刀、高温结构材料等。 一、氧化铝陶瓷在机械方面的应用氧化铝陶瓷烧结产品的抗弯强度可达250Mpa,热压产品可达500Mpa。Al2O3陶瓷的莫氏硬度可达到9,加上具有优良的抗磨损性能等,所以广泛地应用于硬材料切割、高速钢切割、超高速切割等一些难加工材料的切割。其中以氧化铝陶瓷刀具和工业用阀应用最广,氧化铝陶瓷刀具可以分为纯氧化铝陶瓷刀具、...
2020 - 05 - 11
多孔陶瓷是一种含有气孔且彼此相互连通或闭合的固体材料,它具有抗腐蚀、高温热稳定性以及选择透氧性等优良性能,所以广泛应用于催化剂载体、生物材料、吸音隔音等领域。一、多孔陶瓷在催化剂载体上的应用多孔陶瓷气孔结构优且数量多,吸附能力强,热稳定性好,密度低,耐磨性好,是优良的环保材料。应用在尾气催化载体、尾气微粒过滤器等汽车尾气净化领域以及无机和有机的生产领域,因其优异特点,可以延长催化剂使用寿命,降低成本。随着国内气体排放标准要求越来越高,多孔陶瓷作为尾气催化剂载体的理想材料,应用将会更加广泛。二、多孔陶瓷在医学生物领域上的应用多孔陶瓷具有良好的生物惰性,并有与生物相容性良好,与生物组织结合好,无排异反应等物理、化学稳定性,因此在术后空腔恢复、改善血管生成能力以及促进骨修复等医学生物领域得到很好的应用并有重大的研究价值。三、多孔陶瓷在吸音隔音方面的应用多孔陶瓷的一大特点就是吸附能力强,作为吸音材...
2020 - 04 - 28
陶瓷3D打印原理陶瓷3D打印技术是以激光固化为基础的快速制造技术,由陶瓷粉末和粘结剂混合成打印材料,通过激光在打印材料上固化成型,然后打印出陶瓷零部件。陶瓷3D打印市场分析2020年4月26日,SmarTech发布的《陶瓷快速成型零件生产:2019-2030年》报告中预测,到2030年陶瓷增材制造市场的收入估计将达到48亿美元。报告显示陶瓷3D打印市场将在2025年后迎来一个拐点,原因是到2025年,陶瓷增材制造技术全面发展并且成熟,陶瓷增材制造应用市场规模将会增长三倍。陶瓷3D打印会增加零部件附加值,使得用户对陶瓷增材制造硬件和材料的需求增加,对先进陶瓷材料的行业来说是一个大好的发展机会。陶瓷3D打印技术具有精准度高,成型速度快,产品个性化等优点,且性能稳定。但是高昂的打印材料成本是国内陶瓷3D打印市场发展的主要瓶颈。报告提到,惠普公司的Multi Jet Fusion、ExOne公司的...
2020 - 04 - 16
氧化锆陶瓷,ZrO2陶瓷,具有熔点和沸点高、硬度大、绝缘、导电等优良性质,因此应用广泛、市场广阔。今天主要说说氧化锆陶瓷在口腔领域及手机通讯领域的应用。 一、氧化锆陶瓷在口腔领域的应用经济发展迅速,人们对口腔修复材料的要求越来越高,不但要求满足基本的物化条件、生物相容性条件外,还要满足便捷性、美观性等条件。氧化锆陶瓷因为有着生物相容性、美观性、稳定性等诸多独特优点,成为了具有广泛应用前景的口腔修复材料之一。优点一:生物相容性好氧化锆陶瓷对牙龈无刺激、无过敏反应,也没有金属在口腔内产生的过敏、刺激、腐蚀等不良反应,生物相容性良好,因此很适合应用于口腔。优点二:化学稳定性氧化锆陶瓷不轻易变质,在正常的生理新陈代谢下可以抵抗体液而不会变质,因此其涂层材料可用于金属植入包覆。优点三:美学效果优异氧化锆陶瓷牙外表美观、坚固耐磨,色泽天然,不刺激口腔组织,容易清洁。因此氧化锆陶瓷有其他全瓷材...
分享到:
新之联伊丽斯(上海)展览服务有限公司
上海公司 电话:4000 778 909
电邮:iacechina@unifair.com
广州公司 电话:020-8327 6369
电邮:iacechina@unifair.com





版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展