新闻中心

News

【干货】先进陶瓷六大烧结工艺汇总

日期: 2019-01-07
浏览次数: 900

一、陶瓷烧结技术概述

 

 

陶瓷素坯在烧结前是由许许多多单个的固体颗粒所组成的,坯体中存在大量气孔,气孔率一般为35%~60%(即素坯相对密度为40%~65%),具体数值取决于粉料自身特征和所使用的成型方法和技术。当对固态素坯进行高温加热时,素坯中的颗粒发生物质迁移,达到某一温度后坯体发生收缩,出现晶粒长大,伴随气孔排除,最终在低于熔点的温度下(一般在熔点的0.5~0.7倍)素坯变成致密的多晶陶瓷材料,这种过程称为烧结。

 

烧结的驱动力是粉末坯体的系统表面能减小,烧结过程由低能量晶界取代高能量晶粒表面和坯体体积收缩引起的总界面积减少来驱动,而促使坯体致密化的烧结机理包括蒸发-凝聚、晶格扩散、晶界扩散、黏滞流动等传质方式。

 

陶瓷烧结依据是否产生液相分为固相烧结和液相烧结。同时,陶瓷烧结涉及到温度、气氛、压力等因素及其调控,由此产生了常压烧结、真空烧结、气氛烧结及各种压力烧结技术。下面,小编就来主要介绍一下陶瓷烧结的六大工艺。

 

 

二、陶瓷六大烧结工艺

 

 

 

1

热压烧结

工艺介绍:

热压烧结(hot-pressing,HP)是一种机械加压的烧结方法,此法是先把陶瓷粉末装在模腔内,在加压的同时将粉末加热到烧成温度,由于从外部施加压力而补充了驱动了,因此可在较短时间内达到致密化,并且获得具有细小均匀晶粒的显微结构。对于共价键难烧结的高温陶瓷材料(如Si3N4、B4C、SiC、TiB2、ZrB2),热压烧结是一种有效的致密化技术。

 

条件:

(1)适当的压力和升温制度;

(2)对于某些难烧结的陶瓷材料,也需要加入烧结助剂

(3)粉末的粒径和均匀性也对热压致密化速率有显著影响,要求粉末粒度应为亚微米级(<1μm),且粒径分布窄,并且无硬团聚。

 

优点:

(1)可获得更好的材料力学性能;(2)可减少烧结时间或降低烧结温度;(3)可减少共价键陶瓷烧结助剂的用量,从而提高材料的高温力学性能。

 

缺点:

(1)只能用于制备形式简单和比较扁平的制品;(2)一次烧结的制品数量有限;(3)成本较高。 

因此热压烧结常用于生产单个或多个形状简单的产品,如圆片状、柱状或者棱柱状的棒。

 

典型应用:

(1)陶瓷刀头的烧结。

(2)强共价键陶瓷的烧结。

(3)晶须或纤维增强的复合陶瓷。

(4)透明陶瓷的烧结。

 

2热等静压烧结

 

热等静压(hot isostatic pressing,HIP)是工程陶瓷快速致密化烧结最有效的一种方法,其基本原理是以高压气体作为压力介质作用于陶瓷材料(包封的粉末和素坯,或烧结体),使其在加热过程中经受各向均衡的压力,借助于高温和高压的共同作用达到材料致密化。

 

优点:

(1)降低烧结温度、缩短烧结时间;

(2)减少或不使用烧结助剂;

(3)提高陶瓷性能和可靠性;

(4)便于制造复杂形状产品。

 

典型应用:

(1)氧化硅陶瓷制品;

(2)高强度氧化物陶瓷;

(3)陶瓷基复合材料;

(4)核废料处理用复合陶瓷包套;

(5)透明细晶陶瓷。

 

3气压烧结

气压烧结(gas pressure sintering,GPS)是指陶瓷在高温烧结过程中,施加一定的气体压力,通常为N2,压力范围在1~10MPa,以便抑制在高温下陶瓷材料的分解和失重,从而可提高烧结温度,进一步促进材料的致密化,获得高密度的陶瓷制品。

气压烧结和热等静压烧结都是采用气体作为传递压力的方法,但是两者的压力大小和压力作用是不同的。HIP烧结中气氛压力大(100~300MPa),主要作用是促进陶瓷完全致密化。而GPS烧结中,施加的气体压力小(1~10MPa),主要是抑制Si3N4或其他氮化物类高温材料的热分解。

优点:与热压工艺、热等静压工艺比较,气压烧结工艺最大的优势是可以以较低的成本制备性能较好,形状复杂的产品,并实现批量化生产。

 

4微波烧结

微波烧结是利用微波与材料相互作用,导致介电损耗而使陶瓷表面和内部同时受热(即材料自身发热,也称体积性加热),因此与传统的外热源常规加热吸相比,微波加热具有快速、均匀、能效高、无热源污染等许多优点。

传统加热和烧结是利用外热源,通过辐射、对流、传到对陶瓷样品进行由表面到内部的加热模式,速率慢、能效低,存在温度梯度和热应力。而微波烧结陶瓷的加热是微波电磁场与材料介质的相互作用,导致介电损耗而是陶瓷材料表面和内部同时受热,这样温度梯度小,避免热应力和热冲击的出现。

【干货】先进陶瓷六大烧结工艺汇总

传统烧结炉与微波烧结炉工作原理对比图

 

微波加热和烧结的优点:(1)升温速率快,可以实现陶瓷的快速烧结与晶粒变化;(2)整体均匀加热,内部温度场均匀,显著改善材料的显微结构;(3)微波加热不存在热惯性,烧结周期短;(4)利用微波对材料的选择性加热,可以对材料某些部位进行加热修复或缺陷愈合;(5)自身加热,不存在来自外热源的污染;(6)微波能向热能的转化效率可达80%~90%,高效节能。

大量研究探索证明,许多结构陶瓷可以应用微波烧结,氧化物陶瓷、非氧化物陶瓷以及透明陶瓷用微波烧结,可以得到致密的性能优良的制品,且烧结时间缩短、烧结温度降低。

但是由于微波烧结陶瓷过程既涉及材料学,又涉及电磁场、固体电解质等理论,还有许多技术问题有待解决,因此,微波烧结工程陶瓷的产业化还有一段路要走。

 

5自蔓延致密化烧结

自蔓延高温合成(SHS)制备材料的工艺,最先是1967年前苏联科学家A G Merzhanov等人提出,随后在各种粉体合成中广泛应用。经过半个世纪国内外科研单位及人员的研究,已取得很大进展,该技术可直接制备陶瓷、金属陶瓷、硬质合金和复合管等致密陶瓷,制品也开始工业化生产。

SHS致密化技术是指SHS过程中产物处于炽热塑性状态下借助外部载荷,可以是静载或动载甚至爆炸冲击载荷来实现致密化,有时也借助于高压惰性气氛来促进致密化。这是因为通常自蔓延高温合成得到的产物为疏松状态,一般含有40%~50%的残余孔隙。

目前研究较多的SHS致密化工艺包括:①SHS-准等静压法(SHS-PIP);②热爆-加压法;③高压自燃烧烧结法(HPCS);④气压燃烧烧结法(GPCS);⑤SHS-爆炸冲击加载法(SHS/DC);⑥SHS-离心致密化等。其中,方法①、②为外加机械压力的作用,方法⑥为离心力的作用,而方法③、④、⑤为气体压力的作用。

特点:速度快,产量高,能充分利用资源;设备、工艺简单;产品纯度高;易于实现机械化和自动化;成本低,经济效益好;能够生成新产品。

 

6放电等离子烧结

放电等离子烧结(spark plasma sintering,SPS)又称“等离子活化烧结”

(plasma activated sintering,PAS)。该技术是在模具或样品中直接施加大的脉冲电流,通过热效应或其他场效应,从而实现材料烧结的一种全新的材料制备技术。

【干货】先进陶瓷六大烧结工艺汇总

SPS基本结构图,来自百度文库

 

SPS烧结过程中,电极通入直流脉冲电流时瞬间产生的放电等离子体,使烧结体内部各个颗粒均匀的自身产生焦耳热并使颗粒表面活化。与自身加热反应合成法(SHS)和微波烧结法类似,SPS是有效利用粉末内部的自身发热作用而进行烧结的。SPS烧结过程中可以看作是颗粒放电、导电加热和加压综合作用的结果。除了加热和加压这两个促进因素外,在SPS技术中,颗粒间的有效放电可产生局部高温,可以使表面局部熔化、表面物质剥落;高温等离子的溅射和放电冲击清除了粉末颗粒表面杂质(如去除表面氧化物等)和吸附的气体。电场的作用是加快扩散过程。

优点:加热均匀,升温速度快,烧结温度低,烧结时间短,生产效率高,产品组织细小均匀,能保持原材料的自然状态,可以得到高致密度的材料,可以烧结梯度材料以及复杂工件。与HP和HIP相比,SPS装置操作简单,不需要专门的熟练技术。

应用:结构陶瓷、功能陶瓷、纳米陶瓷、透明陶瓷、梯度功能材料等领域

 

【干货】先进陶瓷六大烧结工艺汇总

声明:文章内容转载粉末成型圈,仅作分享,不代表本号立场,如有侵权,请联系小编删除,谢谢!


News / 推荐新闻 More
2019 - 01 - 18
导读耐火材料是耐火度不低于1580℃的一类无机非金属材料。耐火度是指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。但仅以耐火度来定义已不能全面描述耐火材料,1580℃并不是绝对的。现定义为凡物理化学性质允许其在高温环境下使用的材料称为耐火材料。耐火材料作为工业基础材料必需品,广泛用于钢铁、冶金、化工、石油、机械制造、电力、动力等工业领域。 中国近年来工业的飞速发展与国家十三五规划实施方案的落地,耐火材料工业必然迎合工业发展的需求而不断的创新。随着冶炼技术和钢铁工业的快速发展,耐火材料也实现了一系列重大技术变革,正逐步由依赖于天然原料、大批量生产的原始制品群向以多品种、小批量、人工原料、开发和设计等为原则的精密、高级制品系列转变,概括起来可以归结为以下几点。 1高纯度化在各国的耐火原料中,那些纯度较低的天然原料,由于所含大量杂质的不良影响和使用性...
2019 - 01 - 16
1先进陶瓷简介陶瓷与金属材料、高分子材料并列为当代三大固体材料,在人类生活和社会建设中不可或缺。三大固体材料按陶瓷的概念和用途分类,陶瓷制品分为普通陶瓷(传统陶瓷)与先进陶瓷(先进陶瓷)两大类。其中,普通陶瓷是指以黏土及其天然矿物为原料,经过粉碎混合、成型、焙烧等工艺过程所制得的各种制品。先进陶瓷是相对于普通陶瓷而言,采用高度精选或合成的原料,具有精确控制的化学组成,按照便于控制的制造技术加工、便于进行结构设计,并且特性优异的陶瓷。先进陶瓷广泛应用于高温、腐蚀,电子、光学领域,作为一种新兴材料,以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会中将发挥重要的作用。普通陶瓷与先进陶瓷的主要区别2先进陶瓷的分类1.按化学成分分类先进陶瓷按化学成分分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷等。2.按性能和用途分类先进陶瓷按其特性和用途可...
2019 - 01 - 14
陶瓷和金属材料、高分子材料并列为当代固体三大材料。由于陶瓷的原子结合方式是键能较大的离子键、共价键或离子–共价混合键,所以具有耐高温、耐腐蚀、耐磨损等许多优良性质。陶瓷涂层更因其能改变底材外表面的形貌、结构和性能,赋予涂层–底材复合体以新的性能而备受青睐,它能够有机地将底材原有特性和陶瓷材料的耐高温、高耐磨、高耐蚀等特点结合起来,并发挥两类材料的综合优势而在航天、航空、国防、化工等工业得到广泛的应用。 稀土被称为新材料的“宝库”,由于具有独特的4f电子结构和物理化学性质。但研究中极少直接使用纯稀土金属,绝大多数使用稀土化合物,最常见的几种化合物有:CeO2、La2O3、Y2O3、LaF3、CeF、CeS及稀土硅铁。这些稀土化合物对陶瓷材料和陶瓷涂层的组织结构及性能均有改善作用。 一、稀土氧化物在陶瓷材料中的应用 将稀土元素作为稳定剂、烧结助剂加入到不同的陶瓷中...
2019 - 01 - 10
稀土及稀土氧化物在陶瓷材料中的应用,主要是作为添加物来改进陶瓷材料的烧结性、致密性、显微结构和晶相组成等,从而在极大程度上改善了它们的力学、电学、光学或热学性能,以满足不同场合下使用的陶瓷材料的性能要求。本文简要综述了稀土氧化物在结构陶瓷材料和功能陶瓷中的应用。 1 稀土氧化物在陶瓷材料中的作用机理  2 稀土氧化物在结构陶瓷材料中的应用 结构陶瓷是指晶粒间主要是离子键和共价键的一类陶瓷材料,具有良好的力学性、高温性和生物相容性等。结构陶瓷在日常生活中应用很普遍,目前已向航空航天、能源环保和大中型集成电路等高技术领域拓展。  2.1 氧化物陶瓷 氧化物陶瓷是指陶瓷中含有氧原子的陶瓷,或高于二氧化硅(SiO2:熔点1730℃)晶体熔点的各种简单氧化物形成的陶瓷。氧化物陶瓷具有良好的物理化学性质,电导率大小与温度成反比。氧化...
分享到:
新之联伊丽斯(上海)展览服务有限公司
广州公司 电话:020-8327 6369
电邮:irisexpo@163.com
上海公司  电话:4000 778 909
电邮:irisexpo@163.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展