新闻中心

News

梳理: 过去一年陶瓷基复合材料领域重大研究突破

日期: 2018-06-07
浏览次数: 567


纤维增韧高温陶瓷基复合材料(CMCs)目前是一类非常有竞争力的极端环境热结构候选材料。其主要包括非氧化物SiC纤维和C纤维增强SiC基复合材料,如:SiCf/SiC和Cf/SiC。陶瓷基复合材料的典型应用包括:新型飞行器热防护系统和动力系统的关键部件以及其他民用动力装置的关键部件;先进核能系统中作为燃料包壳和面向高温等离子体材料及高温热交换材料;高性能制动系统的关键部件材料等。


这些系统的服役环境对材料要求极为苛刻,传统材料对性能提升具有一定的局限性,而陶瓷基复合材料除了具有耐高温、高比强度高比模量高热导率、低热膨胀系数等一系列优良性能外,还具有基体致密度高、耐热震、抗烧蚀、耐辐照及低放射活性、抗疲劳和抗蠕变等特性,展现了优越的高温热力学性能和微观组织稳定性,是一种集结构承载和耐苛刻环境的轻质新型复合材料,在空天飞行器的隔热/防热、航空发动机涡轮叶片、火箭发动机及先进核能耐高温部件上拥有巨大的应用潜力。在2017年,CMCs在航空航天、聚变和核能领域有着精彩的表现。下面就由我带领大家回顾与总结CMCs 2017年研究进展。


1、 CMCs中I型分层裂纹的扩展


根据裂纹体的受载和变形情况,可将裂纹分为三种类型:


(1) 张开型(或称拉伸型)裂纹

外加正应力垂直于裂纹面,在应力σ作用下裂纹尖端张开,扩展方向和正应力垂直。这种张开型裂纹通常简称I型裂纹。


(2) 滑开型(或称剪切型)裂纹

剪切应力平行于裂纹面,裂纹滑开扩展,通常称为Ⅱ型裂纹。


(3) 撕开型裂纹

切应力作用下,一个裂纹面在另一裂纹面上滑动脱开,裂纹前缘平行于滑动方向,如同撕布一样,这称为撕开型裂纹,也简称Ⅲ型裂纹。


美国联合技术研究中心的Rajesh S. Kumar(通讯作者)在Acta Materialia上发表了题为“Crack-Growth Resistance Behavior of Mode-I Delamination in Ceramic Matrix Composites”的文章。作者通过实验和数值模拟的方法研究了陶瓷基复合材料(CMC)中的I型分层裂纹扩展现象。研究结果表明,随着分层增长,承载能力增加,抗裂纹增长能力(R曲线)明显增强。

梳理: 过去一年陶瓷基复合材料领域重大研究突破

                                                          缺口试样二维有限元模型


文献链接:https://www.sciencedirect.com/science/article/pii/S135964541730294X


2、 C/SiC复合材料在热氧化气氛下的蠕变行为及其机理


所谓蠕变,就是指金属或陶瓷材料在恒温、恒载荷的长期作用下缓慢的产生塑性变形的现象。在高温条件下,蠕变对构件产生的影响十分显著。由于施加应力方式的不同,可分为高温压缩蠕变、高温拉伸蠕变、高温弯曲蠕变和高温扭转蠕变。一般常利用蠕变极限、持久强度等指标来描述材料的蠕变性能。


北京航空航天大学的黄鹏飞(通讯作者)在Ceramics International上发表了题为“Creep behavior of C/SiC composite in hot oxidizing atmosphere and its Mechanism”的文章。作者在热氧化气氛下对C/SiC复合材料进行了各种应力和蠕变实验。研究表明,T300碳纤维在600℃以上明显氧化,850℃时C/SiC复合材料试样氧化保护层在10 h内氧化率可降低到80%。在热氧化气氛下热处理10h后,试样横截面的SEM照片显示C/SiC复合材料的氧化从周边开始通过烧蚀碳纤维而延伸到内部。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

                                                 CMC断裂横截面SEM照片


文献链接:

https://www.sciencedirect.com/science/article/pii/S0272884217307083#!


3、三维编织陶瓷基复合材料的损伤与建模


材料的失效分析是指根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。其方法分为有损分析,无损分析,物理分析,化学分析等。


法国热结构复合材料实验室的Gérard L Vignolesa(通讯作者)在Acta Materialia上发表了题为“Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests”的文章。作者分别在室温和1250℃的空气中通过原位X射线显微照相拉伸试验研究SiC/SiC复合材料的失效损伤。此外,作者还从三维图像构建真实的有限元网格以数值在中尺度上再现了的实验。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

                                                           25℃下试样的有限元模型


文献链接: 

https://hal.archives-ouvertes.fr/hal-01593228


4、CMC的氧化处理


哈尔滨工业大学的YuxinChai(通讯作者)在Ceramics International上发布了一篇题为“Effect of oxidation treatment on KD–II SiC fiber–reinforced SiC composites”的文章。作者以含氧量较低的KD-II SiC纤维为增强体,通过聚合物渗透裂解(PIP)工艺制备SiCf / SiC复合材料。作者综合研究了不同温度下氧化处理对KD-II SiC纤维,由LPVCS(液态聚碳硅烷)前驱体转化成的SiC基体和SiCf / SiC复合材料的形貌,结构,组成和力学性能的影响。研究结果表明,氧化处理极大地影响了SiC纤维的力学性能,进而显著影响了SiCf / SiC复合材料的力学性能。随着氧化处理温度的升高,纤维表面开裂越来越明显。经元素分析,碳元素含量急剧下降,氧元素含量急剧增加。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

                                                                        试样的TEM图像

文献链接:

https://www.sciencedirect.com/science/article/pii/S0272884217308027?via%3Dihub#!


5、SiCf /SiC复合材料的界面性质


复合材料界面是指复合材料的基体与增强材料之间化学成分有显著变化的、构成彼此结合的、能起载荷等传递作用的微小区域。界面是一层具有一定厚度(纳米以上)、结构随基体和增强体而异、与基体有明显差别的新相——界面相(或称界面层)。因为增强体和基体互相接触时, 在一定条件的影响下,可能发生化学反应或物理化学作用,如两相间元素的互相扩散、溶解,从而产生不同于原来两相的新相。


来自加州大学伯克利分校的J. Kabel教授(通讯作者)在Composites Part B上发表了一篇题为“Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms”的文章。作者通过小型机械测试、原子力显微镜和透射电子显微镜分析PyC(热解碳)相界面对于复合材料整体力学行为的影响。厚PyC层表现出119MPa的脱粘剪切强度和0.63的内摩擦系数;而薄的PyC层表现出436MPa的脱粘剪切强度和0.11的内部摩擦系数。结果不符合莫尔-库仑标准,因而作者提出了基于莫尔-库仑方程的唯象方程。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

试样TEM照片

文献链接:

https://www.sciencedirect.com/science/article/pii/S1359836817311502


6、加工温度对CMC宏观微观力学性能的影响


来自国防科技大学的H.T.Liu教授(通讯作者)在Composites Part B: Engineering上发表了一篇题为“Processing-temperature dependent micro- and macro-mechanical properties of SiC fiber reinforced SiC matrix composites”的文章。本文采用透射电子显微镜,纳米压痕,纤维推入,微柱分裂等新型表征手段研究了SiC纤维增强SiC基复合材料体系的微观和宏观力学性能。在800〜1000℃的加工温度范围内,随着加工温度的升高,SiC基体晶化程度增加,导致杨氏模量和硬度提高,而高温断裂韧性降低。相比之下,SiC纤维的组织和力学性能都保持稳定。BN界面的引入可以通过阻碍SiC纤维和SiC基体之间的界面反应来显著降低界面强度,增强复合材料的抗断裂性能。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

试样SEM电镜照片

文献链接:

https://www.sciencedirect.com/science/article/pii/S1359836816322673#!


7、CMC旋转超声加工中加工刀具振动对纤维断裂的影响


超声加工是靠磨粒和液体分子的连续冲击、抛磨和空化作用去除工件上的被加工材料,完成所需的加工。实践证明,超声加工是加工玻璃、陶瓷、石英、宝石以及半导体等硬脆材料非常有效的方法。超声加工的优点在于加工精度高、表面粗糙程度低,且其应用不受工件材料的电、化学特性限制,不需要工件导电,也不像激光加工、电火花加工那样给工件带来热损伤和残余应力。


来自清华大学的冯平法教授(通讯作者)在Composites Part B: Engineering上发表了一篇题为“Effects of tool vibration on fiber fracture in rotary ultrasonic machining of C/SiC ceramic matrix composites”的文章。作者对2D-C/SiC复合材料进行了多次旋转超声波加工(RUM)实验。分析了不同纤维方向,超声振幅和主轴转速下微孔表面的微观结构特征。结果表明,纤维的切割方向和切削速度都明显影响C / SiC复合材料的RUM表面形貌。工具超声振动可以通过纤维断裂机理的改变,提高C/SiC复合材料的RUM孔表面质量。


梳理: 过去一年陶瓷基复合材料领域重大研究突破

旋转超波加工设备示意图

文献链接:

https://www.sciencedirect.com/science/article/pii/S1359836816332644#!



2019年3月25至27日

展会将移至上海世博展览馆举办

亚洲最大的单体无柱展厅

将令下届展会的规模更大、档次更高

让我们继续携手,为粉末冶金和先进陶瓷行业的未来发展

创造无限可能

诚邀参观|中国先进陶瓷行业的品牌展会!

News / 推荐新闻 More
2018 - 10 - 12
自2016年末开始,陶瓷膜似是迎来了市场的暖春:先是巴安水务收购德国平板陶瓷膜公司ItN、再是国内陶瓷膜领军企业久吾高科成功上市。陶瓷膜因性能优异而受到了越来越多的关注。而在如今油气行业复苏、海淡领域寻求突破、成本节省渐成趋势的大背景下,陶瓷膜又将如何进军市场呢?本次关于陶瓷膜的介绍,将为大家着重介绍陶瓷膜的市场概况、陶瓷膜在市政、工业、海淡领域的应用现状、以及陶瓷膜未来发展的创新与突破点。◤ ‍什么是陶瓷膜?‍与传统的有机膜相比,陶瓷膜具有耐高温、耐酸碱和高机械强度等多种优秀的材料性能,已成为膜领域发展迅速且极具应用前景的膜材料之一。然而,除了在日本自来水处理领域被大量使用,高成本一直是陶瓷膜在商业化上的一大阻碍。近几年来,随着制造业规模经济的发展,陶瓷膜的生命周期成本也逐渐达到了增长的零界点,在保有高性能的前提下进一步降低成本将成为这一领域的未来发展趋势。工业终端用户对水的再利用的重视...
2018 - 10 - 12
碳化硅陶瓷具有高硬度、高熔点(2400℃) 、高耐磨性和耐腐蚀性,以及优良的抗氧化性、高温强度、化学稳定性、抗热震性、导热性能和良好的气密性等,因而在能源、冶金、机械、石油、化工、航空、航天、国防等领域得到了广泛应用。SiC的性质磨料行业习惯性把碳化硅按色泽分为黑色碳化桂和绿色碳化硅两大类,这二者均为六方晶体,也都属α-SiC。黑碳化硅含SiC约98.5%,黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。其韧性高于绿碳化硅,大多用于加工抗张强度低的材料,如玻璃、陶瓷、石材、耐火材料、铸铁和有色金属等。绿碳化硅含SiC达99%以上,绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其自锐性好,大多用于加工硬质合金、钦合金和光学玻璃,也用于耐磨汽缸套和精磨高速钢刀具。SiC陶瓷的...
分享到:
新之联伊丽斯(上海)展览服务有限公司
上海公司 电话:4000 778 909
电邮:irisexpo@163.com
广州公司 电话:020-8327 6389
电邮:iacechina@unifair.com
版权所有 2017-2020 广东新之联展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展