新闻中心

News

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

日期: 2018-08-23
浏览次数: 767

随着5G技术和无线充电技术的发展、智能终端陶瓷受到广泛的关注。以氧化锆陶瓷为代表的智能终端陶瓷,正在通过手机背板、指纹识别片和智能穿戴设备的形式一步步走近我们的生活(如下图所示)。近两年,小米和OPPO纷纷推出温润如玉的陶瓷手机,其陶瓷背板主要由潮州三环等公司生产和提供。但想要得到高性能的氧化锆智能终端陶瓷,则需要高质量并含有2-3mol%氧化钇稳定剂的氧化锆粉体。目前制备氧化锆粉体的方法可分为三种:固相合成法、液相合成法和气相合成法。其中液相合成法效率高、粉末颗粒质量好、工艺稳定性和可控性比较高,因而在商业中得到广泛应用。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

小米 

MIX 2

 
【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

小米

MIX 2S 

翡翠绿

 
【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

OPPO

 R15

梦镜版



☑指纹识别片

☑智能手表

☑智能穿戴件

        液相法一般有共沉淀法、醇盐水解法、水热法、溶胶-凝胶法、喷雾热解法和反向胶团法。但显然上述方法并非全部适用于氧化锆粉体的工业量产,那么现阶段氧化锆粉体制备企业主要采用哪些方法进行生产呢?为解答上述疑问,本文将重点介绍智能终端设备用的氧化锆粉体商业化制备方法。



1.共沉淀法

        共沉淀法是在混合的金属盐溶液(即两种或两种以上金属盐)中添加沉淀剂(可外加或内部生成)从而获得化学组成均匀的混合沉淀,经洗涤、干燥、煅烧(热分解),得到复合氧化物。共沉淀法制备氧化锆粉体的主要工艺流程如图所示。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

       共沉淀法工艺流程图

        共沉淀法工艺设备简单、生产成本低,且所得氧化锆纳米粉体的性能较好。但洗涤后的沉淀物中残留有少量初始溶液中的阴离子及沉淀剂中的阳离子,会降低纳米粉体的烧结性能。再者共沉淀粉体中存在团聚体,将降低粉体的分散性和烧结活性。因此,尽可能洗涤除去氯离子,消除煅烧过程中可能产生的硬团聚是共沉淀工艺的关键技术。共沉淀法合成Y-TZP粉体的透射电镜照片如图所示。表1、表2分别为两家企业以共沉淀法制备的氧化锆粉体性能。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

共沉淀法合成Y-TZP粉体的透射电镜照片

表1  共沉淀法制备的氧化锆粉体性能

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

表2  共沉淀法制备的氧化锆粉体性能

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

       2.醇盐水解法

   金属醇盐一般可溶于乙醇,遇水后很容易分解成乙醇和氧化物或其水化物。金属醇盐具有挥发性,因而易于精制,又因为金属醇盐水解时不需添加其它阳离子和阴离子,所以能获得高纯度的生成产物。通过调控水解条件,可以得到颗粒直径从几纳米到几十纳米,化学组成均匀的复合氧化物粉料。醇盐水解法制备氧化锆粉体的主要原料是锆的醇盐(如异丙醇锆等),其工艺流程如图所示。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

        醇盐水解法工艺流程图

        日本Tosoh公司采用该方法,通过控制水解条件,将锆盐溶液水解合成氧化锆粉体。该粉体显示出优异的烧结性,烧结后产品晶粒细小、结构均匀,强度高、韧性好以及耐磨性和抗老化性优异,广泛应用于高端精密氧化锆零部件,如智能手表的无线充电盖板、手机背板以及光纤连通器的陶瓷插芯。醇盐水解法制备的粉体具有合适的比表面积,在注射成型、流延成型等生产过程中浆料流变性能好,坯件质量高。另外该粉体适于干压成型或冷等静压成型制备大型陶瓷部件。日本Tosoh公司水解法合成Y-TZP粉体的透射电镜照片如图所示,粉体性能如表所示。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

日本Tosoh公司水解法合成Y-TZP粉体的透射电镜照片

表3 日本Tosoh公司水解法合成Y-TZP粉末粉体性能

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法


3.水热法

        水热法又称热液法,是在特制的密闭反应容器(高压釜)内,采用水溶液作为反应介质,通过对反应容器加热,形成高温高压,使得通常(在常温常压下)难溶或不溶的物质发生溶解并且析晶。水热法制备氧化锆粉体最常用的前驱体是氯氧化锆,其工艺流程如图所示。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

        水热法制备氧化锆粉体工艺流程图

        水热法直接生成氧化锆结晶颗粒,避免了一般湿化学法需要经过锻烧转化成氧化物这一可能形成硬团聚的步骤,因此水热法制备的氧化锆粉体具有极好的性能,其优点如下:1、晶粒发育完整,晶粒细小且分布均匀;2、粉体无团聚或团聚程度低;3、所制粉体具有合适化学计量比和结晶形貌,化学纯度较高;4、所用原料便宜,不必高温锻烧和球磨粉碎,从而避免了在粉体中引入杂质和结构缺陷。水热法制备的粉料粒度极细,可达到纳米级,粒度分布窄,颗粒团聚程度小。但缺点在于设备复杂昂贵,反应条件较苛刻。水热法合成Y-TZP粉体的电镜照片如图所示。下表分别为不同生产企业以水热法制备的氧化锆粉体的性能。

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

水热法合成Y-TZP粉体的电镜照片

表4 水热法制备的氧化锆粉体性能

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

表5 水热法制备的氧化锆粉体性能

【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法

        智能终端陶瓷用氧化锆粉最重要的特征在于烧结后的产品比传统的氧化锆陶瓷结构件具有更高的断裂强度和断裂韧性,以保证跌落过程不产生破裂。同时,烧结后的手机背板经精密加工抛光后的针孔少,以满足终端客户的订制要求。因此,制备纯度高、无团聚、分散性能好、颗粒超细、粒度分布窄、烧结致密度高的氧化锆粉体是总的发展趋势,这对于提高氧化锆智能终端陶瓷的性能和可靠性至关重要。

        随着5G时代的临近,无信号屏蔽的氧化锆智能终端陶瓷将再次成为产业的热点。国内外氧化锆粉体和制品企业也在积极布局,其中国内的潮州三环、山东国瓷、江西赛瓷等企业已开始规模化生产高性能氧化锆粉体,预计高性能的氧化锆智能终端陶瓷产业启动在即,广阔市场值得期待。

参考文献:

[1] 谢志鹏, 结构陶瓷[M], 清华大学, 2011.

[2] 江西赛瓷官网:http://www.sinozr.com/cn/

[3] 东方锆业官网:http://www.orientzr.com/

[4] 日本Tosoh公司官网:https://www.tosoh.com

[5] 山东国瓷公司官网:http://www.sinocera.cn

[6] 广东华旺锆材料有限公司官网:http://www.zirconium-oxide.com/

撰写:彭子钧、谢志鹏教授(辽宁科技大学,清华大学)

编辑:安迪

 

声明

 

1.欢迎转载,但转载请尊重保护原创文章并遵照我们的转载格式。

2.谢绝其他账号直接复制原创文章。

3.若本公众号无意冒犯媒体或个人知识产权,请联系管理员,我们将立即删除。


【热点】智能终端陶瓷用氧化锆粉体特性及商业化制备方法


News / 推荐新闻 More
2019 - 04 - 25
截止到2018年年底,全球154个移动运营商正在进行5G技术测试或试验,参与5G的国家已经扩展到66个。随着5G时代的到来,手机产业又将迎来一轮新的变革,手机背板市场面临着重新洗牌。其中氧化锆陶瓷在新一轮技术洗牌中脱颖而出。一、氧化锆陶瓷手机背板脱颖而出5G时代要求信号传输速度更快,是4G的1~100倍。5G通信将采用3Ghz以上的频谱,其毫米波的波长更短,与金属背板相比,陶瓷背板对信号无干扰,且拥有其他材料无可比拟的优越性能,受到手机生产商的青睐。在所有的陶瓷材料中,氧化锆陶瓷除了具有高强度、高硬度、耐酸碱耐腐蚀及高化学稳定性等优点,同时具有抗刮耐磨、无信号屏蔽、散热性能优良、外观效果好等特点,因此成为继塑料、金属、玻璃之后一种新型的手机机身材质。目前氧化锆陶瓷在手机中的应用主要是背板和指纹识别盖板两部分。某厂家生产的氧化锆陶瓷球某厂家生产的氧化锆陶瓷手机背板二、氧化锆手机陶瓷制备及难点...
2019 - 04 - 23
纳米陶瓷是纳米材料的一个分支,是指平均晶粒尺寸小于100nm的陶瓷材料。具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能。在陶瓷基体中引入纳米分散相进行复合,能使材料的力学性能得到极大的改善。纳米陶瓷的增韧有改善陶瓷的力学性能,提高陶瓷稳定性等的作用。其主要增韧机理有以下几种。裂纹偏转裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。当纳米颗粒与基体间存在热膨胀系数差异时,残余热应力会导致瓷体中的扩展裂纹发生偏转,使得裂纹扩展路径延长,有利于材料韧性的提高。裂纹偏转方向与纳米颗粒和基体间热膨胀系数的相对大小有关。当基体的热膨胀系数较大时,裂纹向纳米颗粒扩展,如果纳米颗粒本身及其与基体间的结合强度足够大,纳米颗粒此时甚至可以对裂纹起到钉扎的作用;当基体的热膨胀系数较小时,扩展裂纹趋向于沿切向绕过纳米颗粒。裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹...
2019 - 04 - 20
多孔陶瓷是一种新型陶瓷材料,也称为气孔功能陶瓷,它是成型后经高温烧成,体内具有大量彼此相通或闭合气孔的陶瓷材料。根据成孔方法和空隙,多孔陶瓷可分为:泡沫陶瓷、蜂窝陶瓷、粒状陶瓷,其对应气孔率如下:多孔陶瓷材料由于其独特的多孔结构而体积密度小、比表面积高、热导率低,加之陶瓷材料本身特有的耐高温、强度高、化学稳定性好等特点,目前已广泛应用于环保、节能、化工、冶炼、食品、制药、生物医疗等多个领域。一、多孔陶瓷材料用于过滤与分离装置多孔过滤陶瓷管多孔陶瓷的板状或管状制品组成的过滤装置具有过滤面积大、过滤效率高的特点。被广泛应用于水的净化处理、油类的分离过滤以及有机溶液、酸碱溶液、其它粘性液体和压缩空气、焦炉煤气、蒸气、甲烷、乙炔等气体的分离。由于多孔陶瓷具有耐高温、耐磨损、耐化学腐蚀、机械强度高等优点,在腐蚀性流体、高温流体、熔融金属等应用领域,正日益显示其特有的优势。二、多孔陶瓷材料用于吸音降噪...
2019 - 04 - 18
氧化铝粉体是工业化生产中最重要的粉体材料之一,而球形粉体,特别是高度分散的球形粉体,因其本身的球形结构使得其具有良好的流动性,加上其分散性,更大的比表面积以及其本身的物化性能,使得其在更多的应用领域中发挥作用。因此,随着日新月异的工业化发展,球形氧化铝粉体必将得到更深层次的开发及更广泛的应用。一、氧化铝家族从广义上讲,氧化铝可以分为含水氧化铝和无水氧化铝两大类。水合氧化铝向α-Al2O3的转变氧化铝及其水合物的不同晶型和特有的理化性能,决定了它们在石油化工、电子、耐火材料、陶瓷、磨料、制药以及航空航天等领域都有广泛的应用。另一方面,正是氧化铝粉体的物化性质的稳定性,所以想通过直接加工氧化铝粉体而提高其性能是极为困难的。因此要得到更高性能的氧化铝粉体需要从合成制备技术开始。二、球形氧化铝的制备粉体球化方法包括物理方法和化学方法。按照不同的物质聚集方式,可将制备球形氧化铝的方法系统地分为气相法...
分享到:
新之联伊丽斯(上海)展览服务有限公司
上海公司 电话:4000 778 909
电邮:iacechina@unifair.com
广州公司 电话:020-8327 6369
电邮:iacechina@unifair.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展