新闻中心

News

纳米陶瓷的主要增韧机理

日期: 2018-08-28
浏览次数: 710

纳米陶瓷是纳米材料的一个分支,是指平均晶粒尺寸小于100nm的陶瓷材料。具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能。


在陶瓷基体中引入纳米分散相进行复合,能使材料的力学性能得到极大的改善。纳米陶瓷的增韧有改善陶瓷的力学性能,提高陶瓷稳定性等的作用。其主要增韧机理有以下几种。



裂纹偏转


裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。当纳米颗粒与基体间存在热膨胀系数差异时,残余热应力会导致瓷体中的扩展裂纹发生偏转,使得裂纹扩展路径延长,有利于材料韧性的提高。


裂纹偏转方向与纳米颗粒和基体间热膨胀系数的相对大小有关。当基体的热膨胀系数较大时,裂纹向纳米颗粒扩展,如果纳米颗粒本身及其与基体间的结合强度足够大,纳米颗粒此时甚至可以对裂纹起到钉扎的作用;当基体的热膨胀系数较小时,扩展裂纹趋向于沿切向绕过纳米颗粒。


裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹偏转的角度越大,能量释放效率就越低,增韧效果就越好,断裂韧性就提高。如图a、b所示。图b表示:①裂纹和晶须相遇;②裂纹弯曲向前③在晶须前面相接④形成新的裂纹前沿并留下裂纹。



纳米陶瓷的主要增韧机理

a裂纹沿晶须轴向扩展


纳米陶瓷的主要增韧机理

b裂纹沿晶须纵向扩展



裂纹桥联


裂纹桥联是一种裂纹尖端尾部效应,是发生在裂纹尖端后方由补强剂连接裂纹的两个表面并提供一个使两个裂纹面相互靠近的应力,即闭合应力,这样导致应力强度因子随裂纹扩展而增加。即裂纹绕过扩展过程中遇上晶须时,裂纹有可能发生穿晶破坏,也有可能出现互锁现象,即裂纹绕过晶须并形成摩擦桥。


在晶须复合陶瓷基材料和粗晶Al2O3陶瓷及Si3N4,由于晶须、Al2O3粗颗粒对裂纹表面的桥连作用,使材料表现出强烈的R-曲线效应,由此导致材料韧性的显著改善。在纳米陶瓷中,由于纳米颗粒尺寸很小,纳米颗粒对于裂纹的桥联作用只能发生在裂纹尖端的局部小区域。此时纳米颗粒虽然不能明显提高R-曲线上的韧性平台值,但却可以使R-曲线在短的裂纹扩展上出现陡然上升情况。由于R-曲线上某点处切线的斜率代表材料此时的强度,纳米复相陶瓷R-曲线在短裂纹扩展上长度上的陡然上升可以使其强度得到明显提高。


在脆性陶瓷基体中加入延性粒子能够明显提高材料的断裂韧性。一般情况下,延性粒子指的是金属粒子。金属粒子的弹性应变使裂纹桥联成为金属陶瓷中最有效的增韧机制。当裂纹扩展到陶瓷/金属界面时,由于延性金属颗粒和脆性基体的变形能力不同,引起裂纹局部钝化,某些裂纹段被迫穿过粒子,而形成被拉长的金属颗粒联桥。



纳米陶瓷的主要增韧机理

桥联增韧示意图



颗粒拔出


拔出效应是指当裂纹扩展遇到高强度晶须时,在裂纹尖端附近晶须与基体界面上存在较大的剪切应力,该应力极易造成晶须与界面的分离开裂,晶须可以从基体中拔出,因界面摩擦而消耗外界载荷的能量而达到增韧的目的。


同时晶须从基体中拔出会产生微裂纹来吸收更多的能量。当晶须取向与裂纹表面呈较大角度时,由基体转向晶须的力在二者界面上产生的剪切力达到了基体的剪切屈服强度,但未达到晶须的剪切曲度强度时,晶须不会被剪断而会从基体中被拔出。使用长径比高的晶须增韧聚合物基复合材料,晶须对增韧主要贡献就是来源于裂纹扩展过程中晶须拔出所消耗的能量。


当晶须与基质的界面剪切应力很低,而晶须的长度较大(>100µm),强度较高时,拔出效应显著。随着界面剪切应力增大,界面摩擦力大,拔出效应降低,当界面剪切应力足够大时,作用在晶须上的剪切强度可能引起晶须断裂而无拔出效应。


纳米颗粒增韧机理


日本研究人员把纳米颗粒增韧的机理归纳为:①组织的细微化作用。抑制晶粒成长和减轻异常晶粒的成长;②残余应力的产生使晶粒内破坏成为主要形式;③控制弹性模量E和热膨胀系数α等来改善强度和韧性等;④晶内纳米粒子使基体颗粒内部形成次界面,并同晶界纳米相一样具有钉扎位错的作用。


研究人员用氧化铝和碳化硅超细粉合成的高强度纳米复相陶瓷在1100℃时强度超过1500Mpa,并认为获得超强度、超韧性结构陶瓷的主要方法是采用微米和纳米混杂的复合技术。





 声      明:文章内容转载粉体网,仅作分享,不代表本号立场,如有侵权,请联系编除,谢谢!


News / 推荐新闻 More
2018 - 09 - 14
English link: foamed ceramics泡沫陶瓷的基本材质是氧化铝、碳化硅、氧化锆、氧化镁。氧化铝Al2O3泡沫陶瓷:铝、铝合金及其它有色合金;碳化硅SiC泡沫陶瓷:球墨铸铁、可锻铸铁、灰铁及其它铸铁;氧化锆ZrO2泡沫陶瓷:钢、合金钢、不锈钢等高熔点金属合金;氧化镁泡沫陶瓷:镁及高活性合金。理化性能材料单位Al2O3SiCZrO2MgO孔密度ppi8-608-608-608-60开孔率%80-90%80-90%80-90%80-90%使用温度℃≤1100≤1500≤1700≤1000常温弯曲强度MPa>0.6>0.8>1.0>0.6常温压缩强度MPa>0.8>0.9>1.2>0.8容重g/cm30.3-0.450.35-0.50.9-1.50.35-0.5热稳定性6次/1100℃6次/1100℃6次/1100℃6次/1100℃尺寸mm按照顾客要求制作泡沫陶瓷是...
2018 - 09 - 13
★ 引言★         在上一篇“我国先进结构陶瓷产业分布与应用发展状况”一文中,从宏观层面展示了我国结构陶瓷产业形成的格局和大致应用发展状况。可见,近三十年来我国从事先进结构陶瓷材料的高校科研院所和众多陶瓷企业在陶瓷材料的研发和产业化方面取得了令人瞩目的成就,已成为先进结构陶瓷材料的制造大国,不但为我国工业化和现代化进程提供了材料保障和支撑,其中不少企业的高性能陶瓷产品出口到海外,这些企业不但有像潮州三环、山东国瓷、顺络电子、中材高新这样的大公司,也有许多像湖南美程、深圳商德、广东夏阳、宜兴九荣、上海华硕、浙江宏泰、北京中兴实强这样具有创新活力的中小型企业。        但是,从陶瓷产业链和价值链上来看,我国先进结...
2018 - 09 - 07
1纺织陶瓷零件常用于制备纺织零件的陶瓷材料可分为4大类,它们是Al2O3陶瓷、TiO2陶瓷、ZrO2和Al2O3ZrO2复合陶瓷(ZTA)。材料种类       优点        用途Al2O3陶瓷硬度高、化学稳定性好、耐高温、耐磨性好可用于络纱、拉丝、纺丝、加弹、机织、针织工艺TiO2陶瓷耐磨性好、导电可用于纱架、加弹机、络纱、卷绕工序ZrO2陶瓷耐磨性好、化学稳定性好、耐高温、韧性高可用于络纱、加弹、切线部位ZTA陶瓷硬度高、耐磨性好、化学稳定性好、有一定韧性可用于张线器、切线器、加弹机等处纺织陶瓷零件种类繁多,下面我们主要介绍3类常见的:摩擦盘、切线器具和导丝器。1、陶瓷摩擦盘在偌大的加弹机上,假捻器就像人类的“心脏”,而摩擦盘则是假捻机的心脏,可调节速度、张力、弹性、韧性等其他变形特性。摩擦盘的材质、...
分享到:
新之联伊丽斯(上海)展览服务有限公司
上海公司 电话:4000 778 909
电邮:irisexpo@163.com
广州公司 电话:020-8327 6389
电邮:iacechina@unifair.com
版权所有 2017-2020 广东新之联展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展