新闻中心

News

新型碳化硅陶瓷致密化烧结助剂制备成功

日期: 2018-10-12
浏览次数: 902

碳化硅陶瓷作为现代工程陶瓷之一,其硬度仅次于金刚石,具有热膨胀系数小、热导率高、化学稳定性好、耐磨性能高、在高温下仍具有良好力学性能和抗氧化性能等突出的物理化学性质,成为最具发展前景的结构陶瓷,可以广泛应用于石油化工、冶金机械、微电子器件和航空航天等领域。同时,SiC还具有低的中子活性、良好的耐辐照损伤能力和高温结构稳定性等优点,成为新一代核裂变以及未来核聚变反应堆中的重要结构材料之一。


然而,碳化硅是强共价化合物,原子扩散能力低,因此在高温下很难烧结致密。为了促进烧结、降低烧结温度,通常需要添加高温烧结助剂来实现,如以Al-B-C-B4C为主的固相烧结助剂体系,和以Al2O3-Y2O3AlN-Re2O3(其中Re2O3通常是Y2O3Er2O3Yb2O3Sc2O3Lu2O3等稀土元素的氧化物)为主的液相烧结体系。大量烧结助剂的使用会造成碳化硅陶瓷高温强度下降和热学性质恶化,因此探索合适的碳化硅陶瓷烧结法是陶瓷学界关注的重点。


另外,陶瓷常规工艺均采用粉末冶金的方法实现烧结助剂和基体陶瓷粉体的混合,该方法存在着添加剂混合不均匀、球磨介质杂质引入等缺点。传统的球磨混合法只是达到了所添加烧结助剂在碳化硅粉末中的随机分散,从单个碳化硅颗粒微观角度来说并未达到均匀接触烧结助剂。如何实现烧结助剂均匀分布于待烧结的碳化硅晶粒界面,这对于陶瓷致密化动力学过程起着至关重要的作用。


中国科学院宁波材料技术与工程研究所核能材料工程实验室(筹)前期研究中子吸收硼化物陶瓷发展出颗粒表面包裹的新技术(Journal of European Ceramic Society, 2017,37(15), 4524-4531; Journal of American Ceramic Society, 2018, 101(9), 3780-3786),该方法突破传统的陶瓷球磨工艺效率低的难题,成功制备了亚微米级均匀分布的两相复合粉体,合成烧结助剂均匀包裹碳化硼的核壳结构,对于低温致密化烧结效果显著。该方法对于纤维和晶须表面包裹MAX相陶瓷涂层也获得了成功,显示出良好的合成工艺普适性(Advanced Electronic Materials, 2018, 4 (5), 1700617; Journal of Materials Science, 2018, 53 (13), 9806-9815; Journal of American Ceramic Society, doi.org/10.1111/jace.15784)。


基于前期工作的积累,实验室科研人员经过大量探索实验,采用熔盐法成功在SiC颗粒表面原位反应包覆可控Y3Si2C2涂层,制备出SiC@Y3Si2C2核-壳结构的复合粉体。该SiC@Y3Si2C2复合粉体通过在1700℃、45MPa的条件下的放电等离子烧结(SPS),成功实现了相对致密度为99.5%的SiC陶瓷,且其杨氏模量、维氏硬度、断裂韧性、热扩散系数以及热导率也分别达到了451.7±48.4GPa、26.3±3.4GPa、7.9±0.2MPa·m1/2、72.2mm2/s、145.9W/(m·K),表现出优异的宏观性能。


在研究致密化机理时,核能材料工程实验室研究人员发现Y3Si2C2涂层体现出低温助烧高温分解的有趣现象,最终Y3Si2C2涂层分解为Y金属和SiC相,大部分Y会逸出碳化硅陶瓷晶界,少量Y同碳化硅表面的氧反应形成耐高温的氧化钇晶界第二相。实验室理论研究人员结合开展了详细的Y-Si-C体系相图的计算分析,利用相图计算CALPHAD(CALculation of PHAse Diagrams)方法,发现Y:SiC成分比例为从1:4降低至1:6、再降低至1:8时,系统中Y3Si2C2相含量降低,同实验观察到的Y3Si2C2涂层厚度变化规律相符合。在计算的1100℃相图中,SiC和Y3Si2C2稳定共存,而在高温相图中(1600℃和1700℃),Y3Si2C2不再稳定存在,SiC和液态液相共存,从而解释了实验烧结样品中得到99.5%的SiC、而Y基本消失的现象。


该研究成果表明,具有三元层状的Y3Si2C2材料可成为碳化硅陶瓷新型的烧结助剂,其具有低温液相存在和高温相分解的特性,能起到促进碳化硅陶瓷高温烧结过程中晶粒重排和晶界处重结晶的效果。该科研成果已在线发表在《欧洲陶瓷学会期刊》上(Journal of European Ceramic Society, 2018,doi.org/10.1016/j.jeurceramsoc.2018.07.054)。以上工作得到了国家自然科学基金(91426304)以及中科院战略先导科技专项(XDA03010305)的资助支持。


新型碳化硅陶瓷致密化烧结助剂制备成功



图1 扫描电子显微镜图片和能谱分析显示出Y3Si2C2良好包裹在SiC颗粒表面


新型碳化硅陶瓷致密化烧结助剂制备成功

图2 扫描电子显微镜背散射照片揭示烧结碳化硅陶瓷断面的形貌和元素分布


新型碳化硅陶瓷致密化烧结助剂制备成功

图3 Y-Si-C三元系相图:(a)Y:SiC成分比例为1:4、1:6和1:8时,系统相组成随温度的变化;(b)1100℃等温截面;(c)1600℃等温截面;(d)1700℃等温截面



声      明:文章内容转载中国科学院宁波材料技术与工程研究所,仅作分享,不代表本号立场,如有侵权,请联系编除,谢谢!

新型碳化硅陶瓷致密化烧结助剂制备成功


News / 推荐新闻 More
2019 - 04 - 20
多孔陶瓷是一种新型陶瓷材料,也称为气孔功能陶瓷,它是成型后经高温烧成,体内具有大量彼此相通或闭合气孔的陶瓷材料。根据成孔方法和空隙,多孔陶瓷可分为:泡沫陶瓷、蜂窝陶瓷、粒状陶瓷,其对应气孔率如下:多孔陶瓷材料由于其独特的多孔结构而体积密度小、比表面积高、热导率低,加之陶瓷材料本身特有的耐高温、强度高、化学稳定性好等特点,目前已广泛应用于环保、节能、化工、冶炼、食品、制药、生物医疗等多个领域。一、多孔陶瓷材料用于过滤与分离装置多孔过滤陶瓷管多孔陶瓷的板状或管状制品组成的过滤装置具有过滤面积大、过滤效率高的特点。被广泛应用于水的净化处理、油类的分离过滤以及有机溶液、酸碱溶液、其它粘性液体和压缩空气、焦炉煤气、蒸气、甲烷、乙炔等气体的分离。由于多孔陶瓷具有耐高温、耐磨损、耐化学腐蚀、机械强度高等优点,在腐蚀性流体、高温流体、熔融金属等应用领域,正日益显示其特有的优势。二、多孔陶瓷材料用于吸音降噪...
2019 - 04 - 18
氧化铝粉体是工业化生产中最重要的粉体材料之一,而球形粉体,特别是高度分散的球形粉体,因其本身的球形结构使得其具有良好的流动性,加上其分散性,更大的比表面积以及其本身的物化性能,使得其在更多的应用领域中发挥作用。因此,随着日新月异的工业化发展,球形氧化铝粉体必将得到更深层次的开发及更广泛的应用。一、氧化铝家族从广义上讲,氧化铝可以分为含水氧化铝和无水氧化铝两大类。水合氧化铝向α-Al2O3的转变氧化铝及其水合物的不同晶型和特有的理化性能,决定了它们在石油化工、电子、耐火材料、陶瓷、磨料、制药以及航空航天等领域都有广泛的应用。另一方面,正是氧化铝粉体的物化性质的稳定性,所以想通过直接加工氧化铝粉体而提高其性能是极为困难的。因此要得到更高性能的氧化铝粉体需要从合成制备技术开始。二、球形氧化铝的制备粉体球化方法包括物理方法和化学方法。按照不同的物质聚集方式,可将制备球形氧化铝的方法系统地分为气相法...
2019 - 04 - 17
回顾   2019.4.17时间总是过得很快转眼间2019第十二届上海国际粉末冶金硬质合金与先进陶瓷展览会已告一段落回顾本届展会展览规模达到25,000平方米云集全球464家优秀企业参展品牌780多个展期内共迎来国内外专业买家22,637人展会现场很多观众忙于参观没有拿到会刊不过没关系我们还有PDF电子版比起厚重如砖头的纸质会刊电子会刊身小容量却一点都不少有需要的行业同仁请联系主办方获取020-8327 6369转818   谭小姐
2019 - 04 - 11
1、先进陶瓷材料产业的背景需求及战略意义随着现代科学技术的高速发展,迫切要求研制与发展具有特殊性能的新一代陶瓷材料。这是因为由离子键和共价键结合的先进陶瓷材料,具有金属和高分子材料不具备的高模量、高硬度、耐磨损、耐高温、耐腐蚀、抗侵蚀、良好的生物相容性以及优异的电学、光学、磁电、压电、热电等特性,从而在航天航空,国防军工,机械化工、生物医疗、信息电子、核电与新能源等领域得到越来越多的应用,已成为国家某些重大工程和尖端技术中不可或缺的关键材料,因此具有重要的科学价值和国家战略意义。近二十年来,在国家重大工程和尖端技术中对陶瓷材料及其制备技术也提出了更高的要求和挑战;例如航天工业火箭发射中液氢液氧涡轮泵用的氮化硅陶瓷轴承在低温极端条件下无滑状态下高速运转,要求陶瓷抽承强度高、初性好、耐磨损、表面加工精度高;激光武器需使用大尺寸大功率Nd-YAG激光透明陶瓷,导弹天线罩需使用高透波高强度陶瓷材料...
分享到:
新之联伊丽斯(上海)展览服务有限公司
广州公司 电话:020-8327 6369
电邮:iacechina@unifair.com
上海公司 电话:4000 778 909
电邮:iacechina@unirischina.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展