新闻中心

News

科普 | 陶瓷纤维(下)

日期: 2018-12-24
浏览次数: 987

非氧化物陶瓷纤维

非氧化物陶瓷纤维最具有代表性的是SiC纤维,在SiC纤维的基础上,又开发了SiCNSiBCNSiCZrSiCAl等高性能陶瓷纤维。它们兼具高性能与结构优势,高性能体现在耐高温和抗蠕变两方面、结构优势是指这类纤维可用作金属基复合材料和陶瓷基复合材料的增强相。本节主要以SiC纤维为代表描述非氧化物陶瓷纤维的研究概况。 

 

 

最新研发进展评述

20世纪70年代日本东北大学Yajima提出用聚碳硅烷转化法制备SiC陶瓷纤维以来,前驱体聚合物转化法成为制备陶瓷纤维最有效和最有潜力的方法。为了提高SiC纤维的耐热温度,日本相继开发了三代SiC纤维,第三代SiC纤维是对聚碳硅烷改性,添加Al作为烧结助剂,制备Si-C-Al-O陶瓷纤维(简称SA纤维),SA纤维的耐温性高于1800℃,它在氩气条件下可以在高达2000℃仍具有2.5GPa的强度,2200℃以上测试显示质量损失仅有1.8%。另外,BN纤维和Si3N4纤维因其具有高强度、低介电常数、低介电损耗等特点,属于高温功能性纤维,被认为在透波领域具有重要的应用前景。结合SiC纤维、BN纤维和Si3N4纤维的各自优势,新一代SiBNC陶瓷纤维兼具有BN纤维和Si3N4纤维的优点,同时具有较高的力学性能和耐高温性能,而且通过调控C元素含量,还可改善其透波性能,在航空航天等高科技领域有重要的应用前景。因此,国际上掀起高温SiBNC陶瓷纤维制备技术研究的热潮,普遍认为此特种高温纤维是至今为止综合性能最为优良的陶瓷纤维之一。据报道,SiBCN陶瓷纤维仅有德国Fraunhofer ISC2006年达到工业级别。

 

在近二十年,我国苏州赛力菲陶纤有限公司、国防科技大学、厦门大学、山西煤化所、东华大学等单位也相继开展了SiC及其系列纤维、BN纤维和Si3N4的研究工作,主要采用前驱体聚合物转化法制备合适的聚合物,再经过熔融纺丝技术路线,得到不同结构和性能的非氧化物陶瓷纤维。我国厦门大学和国防科技大学在SiC纤维的研究上取得显著的成果,已获得商品化的第一代及第二代SiC纤维,第二代SiC纤维产能及质量稳定性方面还有待改进,其它新型的非氧化物陶瓷纤维均在实验室基础研究阶段。总之,SiC基陶瓷纤维将向着高性能化(主要指力学性能和耐温性能)、多功能化、低成本化的方向继续发展,以满足应用所需。

 

国内外对比分析

SiC陶瓷纤维的发展主要集中在日本、美国和德国,日本处于领先地位,日本碳素公司Nicalon TM系列和宇部公司Tyranno TM系列SiC纤维产品都已经实现商品化,为了提高SiC纤维的耐热温度,日本开发了第三代SiC纤维(接近化学计量比的SiC纤维):Hi-Nicalon-STyranno-SAHi-Nicalon-S燃气下长时使用温度为1400℃Tyranno-SA在惰性气氛下使用温度可达1800℃。美国Dow Corning公司研制的Sylramic TM陶瓷纤维(Si-C-B-N-Ti),在烧结中可以原位生成BN界面层,耐高温性能优于NicalonTyranno系列纤维。德国Bayer公司研制的Siboramic陶瓷纤维(SiBN3C),最显著的特点是其具有无定形结构,在1800℃下保持数十小时(例如50h)不结晶;在高温氧化性气氛中纤维最外层形成Si-O玻璃,次外层形成Si-B-N玻璃,阻碍氧的进一步扩散,因此Siboramic具有比其他几种SiC纤维更优异的抗氧化性,最高使用温度在1600℃以上。

 

我国从20 世纪80 年代开始SiC纤维的研究。苏州赛力菲陶纤有限公司是我国首家成功实现连续SiC纤维产业化生产的企业。目前,苏州赛力菲陶纤有限公司连续SiC纤维的长度为500 m,束丝根数1K,纤维强度达到2.3 GPa,直径13μm,模量160 GPa以上,各指标离散系数小于10%;公司在近几年内完成了2SiC纤维的工程化制备开发,第一代SiC纤维(SLF-I)含氧量在15%~20%之间,第二代SiC纤维(SLF-II)含氧量在7%~12%之间,且目前已达到年产1吨连续SiC纤维的生产规模。国防科技大学在国内率先开展了含铝SiC纤维制备研究,目前正在向工程化制造技术转化;厦门大学用两年时间突破了低氧含量SiC纤维的制备关键技术,实验室制备的定长SiC纤维性能接近日本工业化产品水平。2004年厦门大学开始进行高性能SiC纤维可工程化技术与制造设备的研究,正在建设具有国际先进水平的可工程化的连续纤维制备设备与技术平台。

 

随着SiC纤维力学性能和耐温性能的不断提高,在尖端领域应用的范围必将逐步扩大。而国外SiC纤维的应用技术还处于技术封锁状态。我国目前已有性能接近国际第一代SiC纤维的产品,连续化和性能稳定性等问题有待进一步解决。

 

科普 | 陶瓷纤维(下) 

      明:文章内容转载中国复合材料协会,仅作分享,不代表本号立场,如有侵权,请联系编除,谢谢!

 


News / 推荐新闻 More
2019 - 04 - 25
截止到2018年年底,全球154个移动运营商正在进行5G技术测试或试验,参与5G的国家已经扩展到66个。随着5G时代的到来,手机产业又将迎来一轮新的变革,手机背板市场面临着重新洗牌。其中氧化锆陶瓷在新一轮技术洗牌中脱颖而出。一、氧化锆陶瓷手机背板脱颖而出5G时代要求信号传输速度更快,是4G的1~100倍。5G通信将采用3Ghz以上的频谱,其毫米波的波长更短,与金属背板相比,陶瓷背板对信号无干扰,且拥有其他材料无可比拟的优越性能,受到手机生产商的青睐。在所有的陶瓷材料中,氧化锆陶瓷除了具有高强度、高硬度、耐酸碱耐腐蚀及高化学稳定性等优点,同时具有抗刮耐磨、无信号屏蔽、散热性能优良、外观效果好等特点,因此成为继塑料、金属、玻璃之后一种新型的手机机身材质。目前氧化锆陶瓷在手机中的应用主要是背板和指纹识别盖板两部分。某厂家生产的氧化锆陶瓷球某厂家生产的氧化锆陶瓷手机背板二、氧化锆手机陶瓷制备及难点...
2019 - 04 - 23
纳米陶瓷是纳米材料的一个分支,是指平均晶粒尺寸小于100nm的陶瓷材料。具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能。在陶瓷基体中引入纳米分散相进行复合,能使材料的力学性能得到极大的改善。纳米陶瓷的增韧有改善陶瓷的力学性能,提高陶瓷稳定性等的作用。其主要增韧机理有以下几种。裂纹偏转裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。当纳米颗粒与基体间存在热膨胀系数差异时,残余热应力会导致瓷体中的扩展裂纹发生偏转,使得裂纹扩展路径延长,有利于材料韧性的提高。裂纹偏转方向与纳米颗粒和基体间热膨胀系数的相对大小有关。当基体的热膨胀系数较大时,裂纹向纳米颗粒扩展,如果纳米颗粒本身及其与基体间的结合强度足够大,纳米颗粒此时甚至可以对裂纹起到钉扎的作用;当基体的热膨胀系数较小时,扩展裂纹趋向于沿切向绕过纳米颗粒。裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹...
2019 - 04 - 20
多孔陶瓷是一种新型陶瓷材料,也称为气孔功能陶瓷,它是成型后经高温烧成,体内具有大量彼此相通或闭合气孔的陶瓷材料。根据成孔方法和空隙,多孔陶瓷可分为:泡沫陶瓷、蜂窝陶瓷、粒状陶瓷,其对应气孔率如下:多孔陶瓷材料由于其独特的多孔结构而体积密度小、比表面积高、热导率低,加之陶瓷材料本身特有的耐高温、强度高、化学稳定性好等特点,目前已广泛应用于环保、节能、化工、冶炼、食品、制药、生物医疗等多个领域。一、多孔陶瓷材料用于过滤与分离装置多孔过滤陶瓷管多孔陶瓷的板状或管状制品组成的过滤装置具有过滤面积大、过滤效率高的特点。被广泛应用于水的净化处理、油类的分离过滤以及有机溶液、酸碱溶液、其它粘性液体和压缩空气、焦炉煤气、蒸气、甲烷、乙炔等气体的分离。由于多孔陶瓷具有耐高温、耐磨损、耐化学腐蚀、机械强度高等优点,在腐蚀性流体、高温流体、熔融金属等应用领域,正日益显示其特有的优势。二、多孔陶瓷材料用于吸音降噪...
2019 - 04 - 18
氧化铝粉体是工业化生产中最重要的粉体材料之一,而球形粉体,特别是高度分散的球形粉体,因其本身的球形结构使得其具有良好的流动性,加上其分散性,更大的比表面积以及其本身的物化性能,使得其在更多的应用领域中发挥作用。因此,随着日新月异的工业化发展,球形氧化铝粉体必将得到更深层次的开发及更广泛的应用。一、氧化铝家族从广义上讲,氧化铝可以分为含水氧化铝和无水氧化铝两大类。水合氧化铝向α-Al2O3的转变氧化铝及其水合物的不同晶型和特有的理化性能,决定了它们在石油化工、电子、耐火材料、陶瓷、磨料、制药以及航空航天等领域都有广泛的应用。另一方面,正是氧化铝粉体的物化性质的稳定性,所以想通过直接加工氧化铝粉体而提高其性能是极为困难的。因此要得到更高性能的氧化铝粉体需要从合成制备技术开始。二、球形氧化铝的制备粉体球化方法包括物理方法和化学方法。按照不同的物质聚集方式,可将制备球形氧化铝的方法系统地分为气相法...
分享到:
新之联伊丽斯(上海)展览服务有限公司
广州公司 电话:020-8327 6369
电邮:iacechina@unifair.com
上海公司 电话:4000 778 909
电邮:iacechina@unirischina.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展