新闻中心

News

稀土氧化物在陶瓷涂层中的影响力有多大?

日期: 2019-01-14
浏览次数: 925

陶瓷和金属材料、高分子材料并列为当代固体三大材料。由于陶瓷的原子结合方式是键能较大的离子键、共价键或离子共价混合键,所以具有耐高温、耐腐蚀、耐磨损等许多优良性质。陶瓷涂层更因其能改变底材外表面的形貌、结构和性能,赋予涂层底材复合体以新的性能而备受青睐,它能够有机地将底材原有特性和陶瓷材料的耐高温、高耐磨、高耐蚀等特点结合起来,并发挥两类材料的综合优势而在航天、航空、国防、化工等工业得到广泛的应用。

稀土氧化物在陶瓷涂层中的影响力有多大?

 

稀土被称为新材料的“宝库”,由于具有独特的4f电子结构和物理化学性质。但研究中极少直接使用纯稀土金属,绝大多数使用稀土化合物,最常见的几种化合物有:CeO2La2O3Y2O3LaF3CeF、CeS及稀土硅铁。这些稀土化合物对陶瓷材料和陶瓷涂层的组织结构及性能均有改善作用。

 

一、稀土氧化物在陶瓷材料中的应用

 

将稀土元素作为稳定剂、烧结助剂加入到不同的陶瓷中,可以降低其烧结温度、提高和改善某些结构陶瓷的强度、韧性,从而降低生产成本。同时,稀土元素在半导体气敏元件、微波介质、压电陶瓷等功能陶瓷中也起到了非常重要的作用。研究发现,某2种或2种以上稀土氧化物一起添加到氧化铝陶瓷中,比单一稀土氧化物添加到氧化铝陶瓷中的效果要好。经优化试验得到Y2O3+CeO2的效果最好,在1490℃条件下添加0.2%Y2O3+0.2%CeO2,烧结的样品相对密度可达96.2%,超过单独添加任一种稀土氧化物Y2O3或者CeO2样品的密度。

 

La2O3+Y2O3Sm2O3+La2O3促进烧结的效果也比添加单一的要好,且耐磨性能明显提高。这也说明了2种稀土氧化物的混合不是简单的量的加和,它们之间存在相互作用,这种相互作用对氧化铝陶瓷的烧结和性能提高更为有利,但其中的原理尚待研究。

稀土氧化物在陶瓷涂层中的影响力有多大?

 

另有研究发现添加混合稀土金属氧化物作为烧结助剂有利于提高物质的迁移,促进MgO陶瓷的烧结,提高致密度。但当混合金属氧化物的添加量大于15%时,相对密度降低,开气孔率提高。

 

二、稀土氧化物对陶瓷涂层性能的影响

 

现有研究表明,稀土元素能够细化组织晶粒,提高致密度,改善显微组织,净化界面。对改善陶瓷涂层的强度、韧性、硬度、耐磨和耐蚀性等方面都有独到的作用,在一定程度上改善了陶瓷涂层的性能,拓宽了陶瓷涂层的应用范围。

 

1稀土氧化物改善陶瓷涂层力学性能

稀土氧化物能够显著提高陶瓷涂层的硬度、抗弯强度及涂层的抗拉结合强度。实验发现,在Al2O3+3%TiO2材料中采用LaO2做添加剂,可有效提高涂层的抗拉强度,当LaO2加入量为6.0%(质量分数)时最佳,抗拉结合强度可达到27.36MPa。在Cr2O3材料中加入质量分数为3.0%6.0%CeO2后,涂层的抗拉结合强度在18~25MPa之间,均大于原先的12~16MPa;但CeO2的加入量为9.0%时,抗拉结合强度反而降为12~15MPa

 

2稀土对陶瓷涂层抗热震性能的改善

抗热震试验是定性反映涂层与基体的结合强度和涂层与基体热膨胀系数匹配的重要试验,直接反映涂层材料在使用过程中、温度交替变化时涂层抗剥离的能力,也从侧面反映了涂层材料抵抗机械冲击疲劳的能力和与基体的结合能力,因此也是判断陶瓷涂层质量好坏的关键因素。

稀土氧化物在陶瓷涂层中的影响力有多大?

 

研究表明,加入3.0%CeO2可降低涂层中的孔隙率和孔洞尺寸,减少涂层内应力在孔隙边缘的应力集中,从而提高Cr2O3涂层的抗热震性。而在Al2O3陶瓷涂层中加入LaO2后,涂层的孔隙率有所降低,结合强度和涂层热震失效寿命均能明显提高。当LaO2加入量为6%(质量分数)时,涂层的抗热震性能最好,热震失效寿命可达到218次,而未添加LaO2的涂层热震失效寿命仅为163次。

 

3稀土氧化物影响涂层的耐磨性能

用于改善陶瓷涂层耐磨性的稀土氧化物多为CeO2La2O3,其具有的六方层状结构能表现出良好的润滑功能,并在高温下保持稳定的化学性能,能够有效地提高耐磨性,降低摩擦系数。

 

稀土氧化物在陶瓷涂层中的影响力有多大?

 

研究表明,添加适量CeO2的涂层摩擦系数较小且稳定。有报道表明,在等离子喷涂镍基金属陶瓷涂层中添加La2O3,可以明显地减小摩擦磨损及涂层的摩擦因数,且摩擦系数稳定,波动较小。不含稀土的熔覆层磨损表面呈现严重的粘着和脆性断裂剥落迹象,而含稀土的涂层其磨损表面粘着迹象较微弱,未见大面积脆性剥落迹象。掺杂稀土的涂层微观结构更加密集、紧凑,孔洞减少,减小了微观粒子平均承受的摩擦力,使摩擦磨损减小;掺杂稀土还会增大金属陶瓷的晶面距离,导致相互作用的两晶面作用力变化而降低摩擦因数。

 

小结:

 

尽管稀土氧化物在陶瓷材料及涂层的应用方面取得了较大的成绩,能够有效地改善陶瓷材料及涂层的微观组织和力学性能,但仍有许多未知的性质,特别是在减轻摩擦磨损方面的作用机理更有待于进一步探究。如何使材料强度和耐磨性与其润滑性能协同配合,已成为摩擦学领域值得探讨的重要方向。

部分资料来源:《稀土氧化物在陶瓷涂层中的应用》


 稀土氧化物在陶瓷涂层中的影响力有多大?

 声      明:文章内容转载粉体网,仅作分享,不代表本号立场,如有侵权,请联系编除,谢谢!



News / 推荐新闻 More
2019 - 04 - 25
截止到2018年年底,全球154个移动运营商正在进行5G技术测试或试验,参与5G的国家已经扩展到66个。随着5G时代的到来,手机产业又将迎来一轮新的变革,手机背板市场面临着重新洗牌。其中氧化锆陶瓷在新一轮技术洗牌中脱颖而出。一、氧化锆陶瓷手机背板脱颖而出5G时代要求信号传输速度更快,是4G的1~100倍。5G通信将采用3Ghz以上的频谱,其毫米波的波长更短,与金属背板相比,陶瓷背板对信号无干扰,且拥有其他材料无可比拟的优越性能,受到手机生产商的青睐。在所有的陶瓷材料中,氧化锆陶瓷除了具有高强度、高硬度、耐酸碱耐腐蚀及高化学稳定性等优点,同时具有抗刮耐磨、无信号屏蔽、散热性能优良、外观效果好等特点,因此成为继塑料、金属、玻璃之后一种新型的手机机身材质。目前氧化锆陶瓷在手机中的应用主要是背板和指纹识别盖板两部分。某厂家生产的氧化锆陶瓷球某厂家生产的氧化锆陶瓷手机背板二、氧化锆手机陶瓷制备及难点...
2019 - 04 - 23
纳米陶瓷是纳米材料的一个分支,是指平均晶粒尺寸小于100nm的陶瓷材料。具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能。在陶瓷基体中引入纳米分散相进行复合,能使材料的力学性能得到极大的改善。纳米陶瓷的增韧有改善陶瓷的力学性能,提高陶瓷稳定性等的作用。其主要增韧机理有以下几种。裂纹偏转裂纹偏转增韧是裂纹非平面断裂效应的一种增韧方式。当纳米颗粒与基体间存在热膨胀系数差异时,残余热应力会导致瓷体中的扩展裂纹发生偏转,使得裂纹扩展路径延长,有利于材料韧性的提高。裂纹偏转方向与纳米颗粒和基体间热膨胀系数的相对大小有关。当基体的热膨胀系数较大时,裂纹向纳米颗粒扩展,如果纳米颗粒本身及其与基体间的结合强度足够大,纳米颗粒此时甚至可以对裂纹起到钉扎的作用;当基体的热膨胀系数较小时,扩展裂纹趋向于沿切向绕过纳米颗粒。裂纹扩展到达晶须时,被迫沿晶须偏转,这意味着裂纹的前行路径更长,裂纹尖端的应力强度减少,裂纹...
2019 - 04 - 20
多孔陶瓷是一种新型陶瓷材料,也称为气孔功能陶瓷,它是成型后经高温烧成,体内具有大量彼此相通或闭合气孔的陶瓷材料。根据成孔方法和空隙,多孔陶瓷可分为:泡沫陶瓷、蜂窝陶瓷、粒状陶瓷,其对应气孔率如下:多孔陶瓷材料由于其独特的多孔结构而体积密度小、比表面积高、热导率低,加之陶瓷材料本身特有的耐高温、强度高、化学稳定性好等特点,目前已广泛应用于环保、节能、化工、冶炼、食品、制药、生物医疗等多个领域。一、多孔陶瓷材料用于过滤与分离装置多孔过滤陶瓷管多孔陶瓷的板状或管状制品组成的过滤装置具有过滤面积大、过滤效率高的特点。被广泛应用于水的净化处理、油类的分离过滤以及有机溶液、酸碱溶液、其它粘性液体和压缩空气、焦炉煤气、蒸气、甲烷、乙炔等气体的分离。由于多孔陶瓷具有耐高温、耐磨损、耐化学腐蚀、机械强度高等优点,在腐蚀性流体、高温流体、熔融金属等应用领域,正日益显示其特有的优势。二、多孔陶瓷材料用于吸音降噪...
2019 - 04 - 18
氧化铝粉体是工业化生产中最重要的粉体材料之一,而球形粉体,特别是高度分散的球形粉体,因其本身的球形结构使得其具有良好的流动性,加上其分散性,更大的比表面积以及其本身的物化性能,使得其在更多的应用领域中发挥作用。因此,随着日新月异的工业化发展,球形氧化铝粉体必将得到更深层次的开发及更广泛的应用。一、氧化铝家族从广义上讲,氧化铝可以分为含水氧化铝和无水氧化铝两大类。水合氧化铝向α-Al2O3的转变氧化铝及其水合物的不同晶型和特有的理化性能,决定了它们在石油化工、电子、耐火材料、陶瓷、磨料、制药以及航空航天等领域都有广泛的应用。另一方面,正是氧化铝粉体的物化性质的稳定性,所以想通过直接加工氧化铝粉体而提高其性能是极为困难的。因此要得到更高性能的氧化铝粉体需要从合成制备技术开始。二、球形氧化铝的制备粉体球化方法包括物理方法和化学方法。按照不同的物质聚集方式,可将制备球形氧化铝的方法系统地分为气相法...
分享到:
新之联伊丽斯(上海)展览服务有限公司
广州公司 电话:020-8327 6369
电邮:iacechina@unifair.com
上海公司 电话:4000 778 909
电邮:iacechina@unirischina.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展