新闻中心

News

纳米材料在陶瓷领域的应用

日期: 2018-08-10
浏览次数: 697

1.防护材料



普通陶瓷在用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、垮晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。而纳米陶瓷由于其耐冲击的性能可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗烧蚀性和抗冲击性。由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心。在高射武器方面采用纳米陶瓷,可提高其抗烧结冲击能力并延长使用寿命。目前国外复合装甲已经采用高性能的防弹材料,在未来的战争中若能把纳米陶瓷用于车辆装甲防护,则会使装甲层具有更好的抗弹、抗爆震、抗击穿能力。


2.高温材料

纳米陶瓷具有高耐热性、高温抗氧化性、低密度、高断裂韧性、抗腐蚀性和耐磨性,这些特性可提高航空发动机的涡轮前温度,从而提高发动机的推重比和降低燃料消耗,因此纳米材料有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机的效率、可靠性与工作寿命。

3.吸收材料


SINCO陶瓷粉是用有机硅聚合物(PSN)为前驱体,经高温裂解得到黑色疏松体,再经球磨得到的黑色粉末。由于SINCO粉由SiC、Si3N4等具有吸波性的物质组成,而且具有良好的陶瓷特性,故受到研究人员的广泛重视。周东等对SINCO粉末的吸波性能做了初步测试,实验结果表明SINCO 粉在38.0-39.5GHz高频带表现出较好吸波性,衰减大于10dB.国外高温吸波材料的研制主要集中在陶瓷基复合材料,除较早报道的SiC、Si3N4等的复合体,日本研制的SiC/Si3N4/C/BN耐高温陶瓷吸波材料外,能作为高温吸波材料的还有SiCwf/GeO2、ZrO2·Al2O3·2SiO2/mullite等。

纳米SiC不仅吸波性好,且耐高温、相对密度小、韧性好、强度高、电阻率大、能削弱红外信号,它与碳粉、纳米金属粉等结合吸波性能更佳。研究者们在SiC中添加N、O等元素增强其半导体性能,其吸波性能也很好。Nihara研究表明含有微米-纳米级SiC颗粒的复合陶瓷材料的性能明显优于常规单相SiC材料,陶瓷的常温和高温性能都得到改善,稳定性得以提高,其也是最有发展前途的陶瓷系统之一。碳化硅吸收剂虽然是隐身材料中最有希望的耐高温吸波材料,但常规制备的碳化硅的吸收效率不是很高,并不能作为雷达波吸收剂,必须对其做进一步的处理,处理的目的是控制碳化硅的电导率,使其具有吸波性能。可采取两种办法提高SiC的纯度,并对其进行有控制的掺杂。日本利用纯度极高的原料,制得几乎不含任何杂质的SiC粉体,该SiC粉具有很宽的吸收频带和很高的吸波性能,但缺点是难以获得纯度极高的原料,成本高。西北工业大学的焦桓等采用CVD法制备了SiC(N)纳米粉体,利用阻抗匹配原理进行优化设计,分别设计出双层吸波材料,用不同氮含量的SiC(N)纳米粉体设计吸波材料反射率曲线。在8-18GHz频率范围内,反射率均大于-2dB,甚至出现峰值反射率为-22.6dB。氮原子摩尔分数为8.34%的粉体设计的涂层在8-18GHz的频率范围内反射率均大于-5dB,即氮含量较低的粉体所设计的吸波材料对电磁波具有比较好的吸波效果。


文章转自:光电与显示




News / 推荐新闻 More
2019 - 01 - 29
陶瓷成型是为了得到内部均匀和密度高的陶瓷坯体,是陶瓷制备工艺中重要的一环,成型技术在很大程度上决定了坯体的均匀性和制备复杂形状部件的能力,并直接影响到材料的可靠性和最终陶瓷部件的成本。陶瓷成型方法很多,可以归纳为下图。 图 陶瓷成型方法表 各种成型技术的比较 成型方法成型用料制品形状均匀性效率成本干压成型造粒粉料扁平形状偏差高低冷等静压造粒粉料圆管圆柱形球状体好中等中等注浆成型浆料复杂形状,大尺寸较好较低低流延成型浆料<1mm厚截面好高中等凝胶成型浆料复杂形状,厚截面,大尺寸较好低较低直接凝固注模浆料复杂形状厚截面好低较低挤出成型塑性料圆柱圆筒形,长尺寸制品中等高中等热压铸黏塑性料复杂形状,小尺寸较好高较低注射成型黏塑性料复杂形状,小尺寸好高中等 上述各种成型方法,成型原理和过程不同,因此特点也不同,各自均有优缺点。且陶瓷的成型技术对于制品的性能具有重要影响。...
2019 - 01 - 25
还有59天第十二届上海国际粉末冶金硬质合金与先进陶瓷展览会就要开幕了 现在进行参观预先登记不仅可以提前办理参观入场证还有机会获得主办方准备的心意礼物同时分享给同行好友让好友一起拿礼物 第一步:长按识别图中小程序  第二步:进入小程序界面,点击下方“参观登记”  第三步:填写预登记信息  第四步:成功提交预登记信息后,即可马上得到一张电子参展证件,保存到相册,展会当天可直接扫码进入展览馆。  第五步:点击“分享”  第六步:转发给微信好友或保存海报发朋友圈,邀请同行好友一起预登记拿礼物。  第七步:点击查看“我的影响力”  你的影响力排名将由“分享次数”、“阅读量”和“好友登记数量”三个数据共同决定。转发分享越多,阅读量和好友登记数量...
2019 - 01 - 22
微波烧结是一种新型的材料致密化烧结工艺,它是利用微波加热对材料进行烧结。材料的微波烧结始于20世纪60年代中期,Levinson和Tinga首先提出陶瓷材料的微波烧结;从70年代中期到90年代中期,国内外对微波烧结技术进行了系统研究,体现在不同材料的微波理论、装置系统优化、介电参数、数值模拟和烧结工艺等方面;90年代后期,微波烧结进入产业化阶段,美国、加拿大、德国、日本等发达国家开始小批量生产陶瓷产品。我国在1988年将微波用于材料烧结,目前已经取得了很大的进展,正逐步向产业化方向发展。微波烧结技术因其在陶瓷材料制备领域的突出优势,被誉为“21世纪新一代烧结术”[1]。01微波烧结的原理与装置结构微波烧结原理与传统烧结有着本质区别。传统烧结是工频电流流过负载电阻,电阻把电能转换成热能,通过对流、辐射、传导方式将热量传递到被烧结的材料,然后材料通过自身的热传导由表及里升温,从而达到烧结目的。...
2019 - 01 - 18
导读耐火材料是耐火度不低于1580℃的一类无机非金属材料。耐火度是指耐火材料锥形体试样在没有荷重情况下,抵抗高温作用而不软化熔倒的摄氏温度。但仅以耐火度来定义已不能全面描述耐火材料,1580℃并不是绝对的。现定义为凡物理化学性质允许其在高温环境下使用的材料称为耐火材料。耐火材料作为工业基础材料必需品,广泛用于钢铁、冶金、化工、石油、机械制造、电力、动力等工业领域。 中国近年来工业的飞速发展与国家十三五规划实施方案的落地,耐火材料工业必然迎合工业发展的需求而不断的创新。随着冶炼技术和钢铁工业的快速发展,耐火材料也实现了一系列重大技术变革,正逐步由依赖于天然原料、大批量生产的原始制品群向以多品种、小批量、人工原料、开发和设计等为原则的精密、高级制品系列转变,概括起来可以归结为以下几点。 1高纯度化在各国的耐火原料中,那些纯度较低的天然原料,由于所含大量杂质的不良影响和使用性...
分享到:
新之联伊丽斯(上海)展览服务有限公司
广州公司 电话:020-8327 6369
电邮:irisexpo@163.com
上海公司 电话:4000 778 909
电邮:irisexpo@163.com
版权所有 2017-2020 新之联伊丽斯(上海)展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展