新闻中心

News

纳米材料在陶瓷领域的应用

日期: 2018-08-10
浏览次数: 648

1.防护材料



普通陶瓷在用作防护材料时,由于其韧性差,受到弹丸撞击后容易在撞击区出现显微破坏、垮晶、界面破坏、裂纹扩展等一系列破坏过程,从而降低了陶瓷材料的抗弹性能。而纳米陶瓷由于其耐冲击的性能可有效提高主战坦克复合装甲的抗弹能力,增强速射武器陶瓷衬管的抗烧蚀性和抗冲击性。由防弹陶瓷外层和碳纳米管复合材料作衬底,可制成坚硬如钢的防弹背心。在高射武器方面采用纳米陶瓷,可提高其抗烧结冲击能力并延长使用寿命。目前国外复合装甲已经采用高性能的防弹材料,在未来的战争中若能把纳米陶瓷用于车辆装甲防护,则会使装甲层具有更好的抗弹、抗爆震、抗击穿能力。


2.高温材料

纳米陶瓷具有高耐热性、高温抗氧化性、低密度、高断裂韧性、抗腐蚀性和耐磨性,这些特性可提高航空发动机的涡轮前温度,从而提高发动机的推重比和降低燃料消耗,因此纳米材料有望成为舰艇、军用涡轮发动机高温部件的理想材料,以提高发动机的效率、可靠性与工作寿命。

3.吸收材料


SINCO陶瓷粉是用有机硅聚合物(PSN)为前驱体,经高温裂解得到黑色疏松体,再经球磨得到的黑色粉末。由于SINCO粉由SiC、Si3N4等具有吸波性的物质组成,而且具有良好的陶瓷特性,故受到研究人员的广泛重视。周东等对SINCO粉末的吸波性能做了初步测试,实验结果表明SINCO 粉在38.0-39.5GHz高频带表现出较好吸波性,衰减大于10dB.国外高温吸波材料的研制主要集中在陶瓷基复合材料,除较早报道的SiC、Si3N4等的复合体,日本研制的SiC/Si3N4/C/BN耐高温陶瓷吸波材料外,能作为高温吸波材料的还有SiCwf/GeO2、ZrO2·Al2O3·2SiO2/mullite等。

纳米SiC不仅吸波性好,且耐高温、相对密度小、韧性好、强度高、电阻率大、能削弱红外信号,它与碳粉、纳米金属粉等结合吸波性能更佳。研究者们在SiC中添加N、O等元素增强其半导体性能,其吸波性能也很好。Nihara研究表明含有微米-纳米级SiC颗粒的复合陶瓷材料的性能明显优于常规单相SiC材料,陶瓷的常温和高温性能都得到改善,稳定性得以提高,其也是最有发展前途的陶瓷系统之一。碳化硅吸收剂虽然是隐身材料中最有希望的耐高温吸波材料,但常规制备的碳化硅的吸收效率不是很高,并不能作为雷达波吸收剂,必须对其做进一步的处理,处理的目的是控制碳化硅的电导率,使其具有吸波性能。可采取两种办法提高SiC的纯度,并对其进行有控制的掺杂。日本利用纯度极高的原料,制得几乎不含任何杂质的SiC粉体,该SiC粉具有很宽的吸收频带和很高的吸波性能,但缺点是难以获得纯度极高的原料,成本高。西北工业大学的焦桓等采用CVD法制备了SiC(N)纳米粉体,利用阻抗匹配原理进行优化设计,分别设计出双层吸波材料,用不同氮含量的SiC(N)纳米粉体设计吸波材料反射率曲线。在8-18GHz频率范围内,反射率均大于-2dB,甚至出现峰值反射率为-22.6dB。氮原子摩尔分数为8.34%的粉体设计的涂层在8-18GHz的频率范围内反射率均大于-5dB,即氮含量较低的粉体所设计的吸波材料对电磁波具有比较好的吸波效果。


文章转自:光电与显示




News / 推荐新闻 More
2018 - 08 - 17
陶瓷膜是近年来新出现的新型阻隔包装膜材料,陶瓷膜的生产工艺与镀铝膜生产相似,也是采用真空镀膜的方法。目前用于包装领域的陶瓷膜主要有SiO2(氧化硅),Al2O3(氧化铝),TiO2(氧化钛)等。透明阻隔膜相对传统的镀铝阻隔膜最大的优势在于消费者可以清楚地透过包装材料看到商品本身,而且,在高速包装过程中,透明阻隔材料不会对被包装商品产生任何金属污染。由于SiO2(二氧化硅),Al2O3(三氧化二铝),TiO2(氧化钛)的熔点均超过1500℃,远超过金属铝的熔点(约660℃),陶瓷膜的生产相比更加困难,必须采用专用的真空镀膜设备进行生产,这也是导致陶瓷膜生产成本较高的主要原因。一般来说,透明阻隔膜是传统的镀铝阻隔膜价格的2~3倍。如何降低现有生产工艺设备的生产成本是当前的研究热点。透明阻隔膜制备方法众多,目前已经用于生产的工艺方法可分为以下五类:一、采用感应热蒸发加热氧化硅材料制备氧化硅膜材料...
2018 - 08 - 17
独石陶瓷电容器的绝缘电阻表示当在电容器端子之间施加直流电压 (无纹波) 时,在设定时间 (比如60秒) 之后施加电压和漏电流之间的比率。当一个电容器绝缘电阻的理论值无穷大时,因为实际电容器的绝缘电极之间的电流流量很小,实际电阻值是有限的。上述电阻值称为"绝缘电阻",并用兆欧[MΩ]和欧法拉[ΩF]等单位表示。绝缘电阻值的性能当直流电压直接施加在电容器后,突入电流 (也称充电电流) 的流量如下图1所示。随着电容器逐渐被充电,电流呈指数降低。 电流I (t) 随时间的增加而分为三类 (如方程 (1) 所示),即充电电流Ic (t)、吸收电流Ia (t) 和漏电电流Ir。I (t)=Ic (t)+Ia (t)+Ir 方程 (1)充电电流表明电流通过一个理想的电容器。与充电电流相比,吸收电流有一个延迟过程,并且在低频范围内伴随有介电损耗、造成高介电常数电容器 (铁电性...
2018 - 08 - 16
★ 前言 ★    从二十世纪八十年代开始,以高效发动机和燃汽轮机中高温陶瓷关键零部件开发为导向的陶瓷材料的组成设计、晶界工程、净尺寸成型、烧结技术研发,为先进结构陶瓷的研究与发展培育了人才队伍、奠定了基础。此后三十年,我国在高技术陶瓷制备技术研发和产业化方面取得巨大进展。目前已可以制备各类新型结构陶瓷材料和生产各种复杂形状的陶瓷部件,其中一部分结构陶瓷产品已出口海外。另外,国内先进结构陶瓷产业分布与区域特色已经形成。伴随着我国结构陶瓷材料制备技术的进步和市场的强劲需求,结构陶瓷产业呈现出良好的发展态势,新一代结构陶瓷产品的应用涵盖各个领域,在国民经济和工业现代化进程中发挥重要的作用。先进结构陶瓷产业地域分布      国内先进结构陶瓷产业主要集中在广东、江苏、山东以及湖南、浙江、江西、河南、辽宁等地...
2018 - 08 - 10
★ 前言 ★       近年来,先进结构陶瓷材料一直是世界各国的重点研发方向,并在国防、航天、电子、生物医学等工业领域得到了广泛的应用。欧美、日本等发达国家作为制造业强国,先进结构陶瓷产业更是处于领跑地位,在一些重要领域、关键环节把控了世界市场。那么欧美日三国先进陶瓷产业具体情况如何?本文依据大数据对欧美、日本先进陶瓷产业进行了简要的梳理与总结。大数据分析在以往10年里,世界先进结构陶瓷的市场规模平均以7%~9%的速度递增,约达到数百亿美元。英国Morgan公司曾估算在结构陶瓷的世界市场中,不同的应用领域所占的比例。例如陶瓷轴承,目前国际上著名的轴承公司如SKF、NSK、FAG、KOYO、SNFA等都先后建立了陶瓷轴承生产线,主要用于高速、高精度机床主轴轴承、计算机硬盘驱动器轴承、牙钻轴承以及防磁、防腐、绝缘等领域,特别是军用的和航天航空...
分享到:
新之联伊丽斯(上海)展览服务有限公司
上海公司 电话:4000 778 909
电邮:irisexpo@163.com
广州公司 电话:020-8327 6389
电邮:iacechina@unifair.com
版权所有 2017-2020 广东新之联展览服务有限公司
犀牛云提供企业云服务
关注展会官微,在线看展