分享至手机分享至手机
关注展会官微关注展会官微

Share to Mobile

您的位置:首页>新闻中心>行业资讯

行业资讯

传递行业最新前沿资讯

参观登记

相关内容

  • HTCC陶瓷基板:高温工艺背后的高可靠性优势解析

    在5G通信、新能源汽车、航空航天等高端制造领域,电子器件对稳定性的要求日益严苛,而HTCC陶瓷基板凭借高温工艺赋予的卓越性能,成为保障设备长效日益严苛,而HTCC陶瓷基板凭借高温工艺赋予的卓越性能,成为保障设备长效运行的核心材料。这种经1500-1600℃高温共烧而成的基板,用“烈火淬炼”的工艺换来了无可替代的可靠性优势。

  • 陶瓷基板是昂贵易碎品?

    提到 “陶瓷”,人们易联想到易碎品;提到 “电子元件”,常关联廉价材料。当二者结合成 “陶瓷基板”,不少人给它贴上 “昂贵脆弱”“冷门” 标签,但事实并非如此。今天我们就来逐一打破关于陶瓷基板的 3 个常见偏见,看看这个藏在电子设备里的 “硬核选手”,到底有多少被误解的实力。

  • 从卫星到医疗:陶瓷基板的 “跨界渗透” 有多惊艳

    在大众认知里,陶瓷基板似乎总与新能源汽车、5G 通信等热门领域绑定,是功率器件的 “散热管家”。但很少有人知道,这个看似 “专精” 的材料,早已悄悄跨界,在卫星通信、医疗设备等高精尖领域挑起大梁。从 3.6 万公里高空的低轨卫星,到手术室里的精准医疗设备,陶瓷基板凭借其独特的性能优势,打破了一个又一个技术瓶颈。今天,我们就来揭开陶瓷基板 “跨界高手” 的面纱,看看它如何在极端环境与精密场景中绽放惊艳实力。

  • 大厂为何偏爱陶瓷基板?

    在半导体、新能源汽车、5G通信等高端领域,陶瓷基板已成为头部大厂布局的关键组件。这一选择并非盲目跟风,而是器件向“高功率、高密度、小型化”升级的必然结果——传统树脂基板、金属基板的性能短板日益凸显,陶瓷基板则凭借散热、绝缘、耐候性等核心优势,精准破解了大厂的技术痛点,成为高端电子器件的“标配”。

氧化锆陶瓷材料有哪些临床应用?

陶瓷作为口腔修复材料已有200多年的历史,陶瓷材料具有美观性好、机械强度(硬度、耐磨度、压缩强度、挠曲强度)高、稳定性高、通透性强等特点,在目前的口腔修复中使用较为普遍。

全瓷口腔修复材料的分类

● 根据材料微观构成中玻璃相与晶相含量的不同,将全瓷材料分为三类:

① 长石质瓷。主要为玻璃相,由天然的长石、石英、高岭土三组分经高温烧结而成。长石质瓷是最早应用于牙科的陶瓷材料,其光学性能非常接近于牙釉质和牙本质。但由于它的机械性能较差,挠曲强度通常只在60~70MPa,因此常用作瓷熔附金属修复体、熔附陶瓷修复体。

② 玻璃陶瓷。同时含有玻璃相和晶相,又称微晶玻璃,是经过高温融化、成型、热处理而制成的一类晶相与玻璃相结合的复合材料。与非晶玻璃相比,晶体填料在玻璃相中的添加或生长使玻璃基陶瓷在机械性能和光学性能上有很大的改变,如增加了热膨胀系数和韧性,改变了材料的颜色、乳光性和透明度。

③ 多晶陶瓷。是一种由晶体直接烧结成的,不含玻璃相、气相的致密陶瓷材料,拥有很高的强度和硬度,运用CAD/CAM设备进行加工。这类材料因为缺乏玻璃相,通常透明度很低,需要饰以饰面瓷。玻璃相为主的玻璃陶瓷具有良好的美学性能,随着晶体数量的增加,其强度越来越高,但透明性变差。


202508071852337620.png

高透氧化锆义齿

该种分类方法暗示了陶瓷成分与适应症的关系。然而,随着当前多晶陶瓷微结构的发展,更多的更多的半透明氧化锆和更坚固透明性下降的玻璃陶瓷的问世对该概念提出了挑战。工业中陶瓷技术的根本发展:这些材料的制造过程已经从天然成分(即长石)转变为合成陶瓷。

● 按照全瓷材料的化学组成和微观结构的不同进行分类,将全瓷材料分为以下三大类:玻璃基陶瓷、多晶陶瓷以及树脂基陶瓷材料。树脂基陶瓷材料与传统的陶瓷材料相比,由于含有有机物支架而具有特殊的性能,它有以下优势:与牙本质的弹性模量更接近;降低了材料的脆性和硬度,更易切削;更便于使用树脂修补;调改后不影响强度,临床操作简便;对天然牙的磨耗远小于玻璃陶瓷;不需要热加工处理,其设计和制作可在椅旁完成。

伴随着对氧化锆材料结构以及加工方式研究的进展,氧化锆的性能逐渐提升,临床应用也更加广泛,如用作人工髋关节,以及我们更加熟知的口腔修复体。

氧化锆的结构和特点

氧化锆是一种存在单斜晶型(m)、四方晶型(t)和立方晶型(c)3种形式的多晶材料,在一定温度条件下会相互发生转换。当烧结氧化锆冷却至室温时,由于晶体结构发生转变(由四方相转变为单斜相),而单斜晶型的晶胞体积比四方晶型多约4%,氧化锆内部会产生裂纹,降低氧化锆的机械强度。加入稳定氧化物如CaO、MgO、CeO2、Y2O3可稳定此过程,加入氧化钇的氧化锆陶瓷具有特有的应力诱导相变增韧效应,使其具有极佳的机械性能,抗弯强度可达900~1200Mpa。另一种在室温下稳定四方相氧化锆的方法是减小晶粒尺寸(平均临界晶粒尺寸<0.3μm)。




图片
纯氧化锆晶体随温度发生的相变

在实际应用当中为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,氧化锆陶瓷根据其微观结构可以分为三种类型:完全稳定的氧化锆(FSZ)、部分稳定的氧化锆(PSZ)、四方氧化锆多晶体(TZP)。如当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。用于牙科材料的氧化锆为氧化钇稳定的四方多晶氧化锆(Y-TZP)

图片

氧化锆常用晶型稳定剂-稀土氧化物


氧化锆陶瓷材料具有良好的美学性能、很好的生物相容性以及优异的韧性、强度和抗疲劳性,此外还具有优异的耐磨性。而氧化锆最主要的缺点是粘固过程中涂层材料的磨损,影响着陶瓷的强度和界面结合的紧密性。氧化锆的化学惰性也会影响粘接效果,进而影响修复体的功能。全轮廓氧化锆修复体有着不透明、在体内发生低温降解。


氧化锆的表面处理

目前临床上常用的陶瓷粘接剂主要可分为4类:树脂类粘接剂、玻璃离子类粘接剂、树脂加玻璃离子类粘接剂、磷酸盐类粘接剂。其中树脂类粘接剂主要依靠化学粘附及机械嵌合,玻璃离子类粘接剂为物理机械性粘接,磷酸盐类粘接剂则以机械嵌合固位为主。其中树脂类粘接剂占主导地位。

陶瓷表面处理可提高与树脂之间的粘接力,常见的陶瓷表面处理主要分为机械方法及化学方法。总体来看,喷砂、蚀刻技术和硅烷偶联剂是最常见的方法,但由于氧化锆陶瓷为多晶陶瓷,不含玻璃基质,酸蚀作用有限,学者们通过改变氧化锆表面粗糙度、成分等来改善其机械锁合及化学粘接性能。

声 明:文章内容来源于粉体匠人。