在线咨询
×
分享至手机分享至手机
关注展会官微关注展会官微

Share to Mobile

您的位置:首页>新闻中心>行业资讯

行业资讯

传递行业最新前沿资讯

参观登记

相关内容

  • 如何烧结出致密的氧化铝陶瓷

    氧化铝陶瓷具有高绝缘性、高隔热性、耐腐蚀、硬度高等优点,可广泛用于制造坩埚、发动机火花塞、高温耐火材料、热电偶套管、绝缘基片、密封环、刀具模具等。

  • HTCC陶瓷基板:高温工艺背后的高可靠性优势解析

    在5G通信、新能源汽车、航空航天等高端制造领域,电子器件对稳定性的要求日益严苛,而HTCC陶瓷基板凭借高温工艺赋予的卓越性能,成为保障设备长效日益严苛,而HTCC陶瓷基板凭借高温工艺赋予的卓越性能,成为保障设备长效运行的核心材料。这种经1500-1600℃高温共烧而成的基板,用“烈火淬炼”的工艺换来了无可替代的可靠性优势。

  • 陶瓷基板是昂贵易碎品?

    提到 “陶瓷”,人们易联想到易碎品;提到 “电子元件”,常关联廉价材料。当二者结合成 “陶瓷基板”,不少人给它贴上 “昂贵脆弱”“冷门” 标签,但事实并非如此。今天我们就来逐一打破关于陶瓷基板的 3 个常见偏见,看看这个藏在电子设备里的 “硬核选手”,到底有多少被误解的实力。

  • 从卫星到医疗:陶瓷基板的 “跨界渗透” 有多惊艳

    在大众认知里,陶瓷基板似乎总与新能源汽车、5G 通信等热门领域绑定,是功率器件的 “散热管家”。但很少有人知道,这个看似 “专精” 的材料,早已悄悄跨界,在卫星通信、医疗设备等高精尖领域挑起大梁。从 3.6 万公里高空的低轨卫星,到手术室里的精准医疗设备,陶瓷基板凭借其独特的性能优势,打破了一个又一个技术瓶颈。今天,我们就来揭开陶瓷基板 “跨界高手” 的面纱,看看它如何在极端环境与精密场景中绽放惊艳实力。

电子陶瓷材料的“灵魂”——半导体陶瓷

新型陶瓷材料是指采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料,这类陶瓷又称为特种陶瓷或精细陶瓷。

新型陶瓷材料在性能上有其独特的优越性

  • 在热和机械性能方面,有耐高温、隔热、高硬度、耐磨耗等;

  • 在电性能方面有绝缘性、压电性、半导体性、磁性等;

  • 在化学方面有催化、耐腐蚀、吸附等功能;

  • 在生物方面,具有一定生物相容性能,可作为生物结构材料等。

  • 但也有它的缺点,如脆性。


按化学成分划分

  • 主要分为两类:一类是纯氧化物陶瓷,如氧化铝、氧化钇、氧化镁陶瓷等;

  • 另一类是非氧化物系陶瓷,如碳化物、硼化物、氮化物和硅化物等。


按性能与特征划分

  • 高温陶瓷

  • 超硬质陶瓷

  • 高韧陶瓷

  • 半导体陶瓷

  • 电解质陶瓷

  • 磁性陶瓷

  • 导电性陶瓷


按其应用不同划分

  • 结构陶瓷

  • 功能陶瓷


高温结构陶瓷


一般用碳化硅、氮化硅或某些金属氧化物(如氧化铝)等在高温下烧结而成,具有时高温、抗氧化、时磨蚀等优良性能。与金属材料相比,更能适应严酷的环境,可用于火箭发动机、汽车发动机和高温电极材料等。


碳化硅(SiC)俗名金刚砂或耐火砂,碳原子与硅原子间通过共价键链接,结构与金刚石类似,所以具有硬度大、耐高温的特点,还具有高温抗氧化性。


202602101503406896.jpg

碳化硅砂轮


202602101503451437.jpg

碳化硅轴承


碳化硅在大自然也存在罕见的矿物——莫桑石,外观与天然钻石极为相似,肉眼很难分辨,也是物理特性最接近天然钻石的一种宝石,摩氏硬度9.25,远高于其它宝石。


202602101503503464.jpg

莫桑石的火彩强过钻石


氧化铝陶瓷是一种以氧化铝(Al2O3)为主体的陶瓷材料,用于厚膜集成电路。氧化铝陶瓷有较好的传导性、机械强度和耐高温性。


202602101503553303.jpg

氧化铝双面覆铜电路基板


刚玉坩埚,学名氧化铝坩埚,通常我们把氧化铝含量超过95%以上的坩埚称为刚玉坩埚。特性:不耐酸碱、耐高温、耐急冷急热、耐化学腐蚀。


202602101504015526.jpg

氧化铝坩埚


压电陶瓷


主要有钛酸盐和锆酸盐等能实现机械能与电能的相互转化。可用于滤波器、扬声器、超声波探伤器和点火器等。


202602101504056690.jpg

入耳式压电陶瓷耳机


压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。


淘气的孩子总喜欢玩这个东西

202602101504129960.jpg

一次性打火机中的压电陶瓷点火器


202602101504178577.jpg

压电陶瓷点火器结构示意图


透明陶瓷


主要有氧化铝、氧化钇等氧化物透明陶瓷和复化铝、氯化钙等非氧化物透明胸瓷,具有优异的光学性能,耐高温,绝缘性好。可用于商压钠灯、激光器和高温探测窗等。


202602101504224872.jpg

半透明氧化铝钠灯 


202602101504283805.jpg

红外成像导弹头及导弹引头氮氧化铝透明罩子


202602101504345573.jpg

透明陶瓷用于装甲车窗


超导陶瓷


在某一临界温度下电阻为零,具有超导性,可用于电力、交通、医疗等领域。超导网瓷可应用于磁悬浮技术。



202602101504391215.jpg

磁悬浮机车结构对比高温超导磁浮


第三代半导体氮化镓


分子式GaN,是一种直接能隙的半导体,GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,具有超强的导热效率、耐高温和耐酸碱等优点。


2020年2月小米公司发布了旗下第一款采用GaN氮化镓材料的充电器,功率同样65W,但更加小巧。氮化镓用在充电器中更是具有高效率低发热、高功率小体积的优点,充电功率转换也比传统充电器更具优势。据外媒Wccftech和DigiTimes消息,苹果公司(Apple)将在今年下半年推出氮化镓充电器。


202602101506453325.jpg

小米GaN充电器Type-C 65W


蓝光LED包含数种不同的氮化镓(GaN)层,中村修二在其中掺入了铟(In)和铝(Al),使得其照明效率大幅提高。2014年,日本名古屋大学和名城大学教授赤崎勇、名古屋大学教授天野浩和美国加州大学圣塔芭芭拉分校教授中村修二因发明蓝光LED而获的当年的诺贝尔物理奖。


202602101506522281.jpg

蓝光LED


先进陶瓷行业新机遇

值得关注的是,第十八国际先进陶瓷展览会将于2026年3月24-26日国家会展中心(上海)隆重举办!

历经十七载精耕细作,已发展成为全球规模最高、产业链覆盖最全的行业期间盛会。展会以55,000㎡的宏大规模,汇聚多个国家及地区的1000余家中外知名企业,打造全球先进陶瓷领域的“创新策源地”与“商贸枢纽站”,专业观众预计突破80,000人次,将打开万亿级市场的战略窗口。展会将搭建起供需精准匹配的高效平台,助力企业链接优质资源,拓展全球市场,推进先进陶瓷产业向高端化、智能化、国际化迈进,书写全球先进陶瓷产业发展的新篇章!

同期举办的第七届先进陶瓷前沿与产业发展论坛2026第四届电子陶瓷及元器件产业发展论坛围绕先进陶瓷与电子陶瓷材料创新、制备工艺、器件设计、应用开发及产业链协同等前沿议题展开深入探讨,助力行业实现升级创新与可持续发展。


观众预登记】正式开启,免费登记通道将于3月23日晚上12:00正式关闭,提前预登记免费领取电子参观证!识别下图了解更多:


202602101504585649.jpg

提前预登记,免费领取电子参观证

*免费领票通道截止至3月23日晚24时


声 明:文章内容来源于化学微课在线。仅作分享,不代表本号立场;图片非商业用途。如有侵权,请联系小编删除,谢谢!